
Discrete Events Simulation as a Computer Game Kernel

Inmaculada García Ramón Mollá
Computer Graphics Section

Dep. of Computation and Computer Systems
Technical University of Valencia

Camino de Vera, s/n
46022 – Valencia – Spain

{ingarcia,rmolla}@dsic.upv.es

Abstract
Many computer games follow a scheme of continuous simulation. This scheme is not able to support all possible
interactions produced among different objects within the system. To join the visualization part with the simulation
process is inefficient. DESK is a simulator kernel that may be used as a computer game kernel. It allows decoupling
simulation and visualization, increasing calculation efficiency. Nervous sampling improves simulation accuracy,
avoiding incorrect behaviors in the system object interactions, typically performed by continuous simulators.
Keywords
Hybrid simulation, computer game engine

1. INTRODUCTION
A real-time graphic application, as virtual reality (VR),
computer games or simulation, may be considered a
system, following the definition of system of Banks and
Carson [Banks95]. As a system, it can be represented
using modeling [Wainer96] and simulation [Banks95]
techniques. Attending to the systems classification, based
on the way the system evolves in time [Wainer96], a real-
time graphic application could be considered as a hybrid
system. In that, the continuous system evolution in time
may be altered by events not associated to the sampling
period.
The earlier real-time graphics systems worked with a
main loop that coupled graphics rendering phase to
simulation phase. If animation and rendering are
decoupled, scenes are render more quickly even when the
higher-level animation computations become complex
[Shaw92]. This decoupling increases system performance
[Darken95]. Some real-time graphic systems that
decouples simulation and visualization are among others:
the Cognitive Coprocessor Architecture [Roberson89],
MR toolkit [Shaw92] based on the Decoupled Simulation
Model, Virtual Builder II, [Gobbetti95], Alice & Diver
[Pausch94] or Bridge [Darken95].
The rendering and simulation decoupling allows not only
to increase system accuracy and speed, also allows the
independence of other process in the system
[Giachetti02]. The natural evolution of decoupling was to
distribute the system processes in a computer network or
to use parallelism. However such distribution is not
possible in games created to run in a single PC or
console. Network games allows multi-users, but not
distribute process in the net.

1.1 Computer games
Many different source code of computer games available
correspond to non-commercial free games made by
enthusiastic people. These computer games lack from
internal organisation. They employ rudimentary
simulation techniques. That is the reason why they have
not been included in the present study [ZIRON].
Only a few commercial computer games have their
source code published. Among them, we emphasise
DOOM v1.1 [DMCd] or QUAKE v2.3 [QKDoc] [QKCd]
games and the Fly3D kernel [Watt01] (a true 3D object
oriented multipurpose game kernel developed in C++)
because of their importance in computer games. Their
working model may be seen in Figure 1.
An events management study of different games has been
performed in order to verify the use of simulation
techniques. Simulation techniques applied in many cases
suppose considering computer game as a continuous
system, although computer games are hybrid systems. So
they have large limitations when working.
2. OBJECTIVES
Hybrid Simulation (HS) allows a more accurate
simulation than Continuous Simulation (CS), avoiding
lost events and a disorderly execution of events when the
simulator has a limit in the computing power. The
objective of this paper consists in the application to video
games the following issues:
 Improve simulation accuracy using a HS model.
 Verify that HS techniques can improve the system

events management, increasing game efficiency.
 Decouple rendering and simulation phase, as in high-

end real-time graphics applications.

Finish?

System initializations

END

Get event from list

Execute function

Visualization

List end?

Yes

Yes

No

User actions execution

Init event list run

UserActions queue

Get entity

Execute think

Entities end?

Init entities list run

Execute prethink

Execute event No

Yes

DOOM

QUAKE

Get object

Objects end?

Evolute object No

Fly3D
Yes

Update lightmaps
and fogmaps

Check multiplayer
messages

Run plugins

Update server

Figure 1: DOOM , QUAKE and Fly3D main loop

The saving in computer power may be used to improve
the Human Computer Interface.
3. ANALYSIS
Simulation cycle is defined as the time elapsed in a run of
the program main loop (sampling period of a continuous
simulator). In the games analysed, each world evolution
always requires a full visualisation of the entire world.
All events are obligatory evolved at the higher speed that
the computer system can supply, following a CS scheme.
This means:
 The system is not sensitive to times lower than the

sampling period.
 Events are executed in the order in which events,

entities or objects management structure are
accessed. They are not time ordering.

 Events are artificially synchronized matching the
sampling period. They are not executed in the very
moment when they happen.

 The sampling frequency depends on topics that can
change during the game, as available computer
power, world complexity, other active tasks in
system, network overload or current simulation and
visualisation load. So, the sampling frequency is
variable and not predefined.

 The sampling frequency is the same for all objects,
independently of their requirements. If objects
behaviours do not match Nyquist-Shannon theorem,
they will not be simulated properly, producing events
loss, not detected collisions,... On the other hand, an
object with a very slow activity may be oversampled.

3.1 Criticism
Current graphic cards support Screen Refresh Rates
(SRR) over 75Hz. Higher frequencies are redundant since
no flicker effect can be appreciated in practice from 72Hz
on. The tests carried out upon QUAKE 3 v1.17 in current
equipments employing last generation cards obtain
refresh rates between 130 and 250 fps [TOM02].
This behaviour is inefficient due to the loses of time
generating renderings that will never be appreciated on
screen. The 70% rendering power is lost when generating
250 fps. An improvement of this operation scheme would
be to separate simulation from rendering. The goal is to
match the system sampling frequency to the SRR,
typically 75Hz. Then, the system calculates only as many
frames as the number of times the screen is refreshed.
Released computer power provides a bigger amount of
simulation cycles used to calculate simulations more
precisely [Reynolds00]. Decoupling the system is not the
solution if the simulation scheme remains continuous,
because:
 Simulating at the fastest speed is inefficient since it

spends calculations simulating intermediate states
not rendered on screen (unadjusted sampling period).

 Scene graph must be accessed twice.
A common practice in the earlier computer games, with
low scene complexity, was to simulate and render each
object, accessing the scene graph once [Bishop98].
Current situation is different because rendered frame
rates are higher than SRR [TOM02].
On the other hand, access through the scene graph when
many objects will never generate events, is quite
inefficient. It would be better to use an events queue.
Only those objects that generate events will be checked,
avoiding to access the remainder objects.
3.2 Improvements
After analysing how these programs operate, the
following improvements are proposed:
 All the objects will have the same priority, including

player avatar.
 Nervous sampling will be supported. This means:

 No event may be lost.
 Events should be attended and simulated at the

moment in which they are produced, not in the
following cycle.

 Each object may have its own sampling period.
Therefore, those objects generate events at a
higher rate have to be sampled at a higher
frequency. Also, the objects that do not generate
events, do not overload the simulation engine.

 Events should be simulated ordering in time.
4. DISCRETE EVENTS SIMULATION KERNEL
DESK [Garcia00] is a C++ object oriented Discrete Events
Simulation Kernel API. This simulator allows changing
dynamically system topology. Also, it allows include any
continuous or discrete behavior in the system. It uses to

be faster than Smpl [SMPL] for almost all simulated
models. DESK can manage models with high complexity
and size. The programmer only focuses on the model
description, not in events or programming bugs. The
effort to describe a behavior can be reused (in the same
model or others). The programmer can implement the
definition of the behavior functions. This gives flexibility
enough to use it as a game kernel.
5. USING DESK AS A COMPUTER GAME
KERNEL
Using DESK as a simulation engine for computer games
does not imply to change topics as the structure of the
scenes description files or characters. It does not modify
the file parser, the scene graph, the rendering techniques
applied or video game style. It only modifies the system
events management and introduces a HS scheme.
Objects in DESK, interact by messages passing. A
message is modeled by means of a client that contains the
necessary information to develop an adequate interaction.
For example, when a projectile collides with a wall, it
sends a message to the wall indicating that it has collided
with it. The message must includes the necessary
parameters (like mass, point of impact, velocity or
projectile kind). The behavior of the receiving object
depends on the object transmitter and the kind of message
sent. The receiving object determines what kind of
behavior must be presented. For example, if a small stone
collides with a wall, perhaps the wall attributes will not
be affected with that message (depending on the weight
of the stone). If the projectile is a missile, the wall can
disappear. The same event with different transmitting
objects causes different behaviors in the same receiving
object; but also in the transmitter (the bullet rebounds if
the wall is made of concrete and it is incrusted if is a clay
wall). Different kind of objects will have different
behaviors.
On the other hand, objects spent time generating an
answer to the message. Therefore, when a ball strikes a
wall, it does not rebound immediately. It spent time
changing its trajectory. The ball can be deformed as
consequence of the impact, to subsequently recuperate its
original form.
5.1 Creating a Game
When a game starts, all objects in game must be created,
assigning them a behavior and grouping them into a
hierarchy. The simulator will invoke the behavior
assigned to an object at the precise moment. It is possible
to define autonomous system behaviors.
The system generates a render event for each SRR. User
events are registered in the events queue at the moment
that are produced. So, they are mixed with the remainder
of system events, being ordered in time. In this way, the
player receives the same homogeneous processing that
the remainder entities. Computer game implementation
using DESK supposes:
 To define the behavior methods of each object:

 A behavior differentiated depending on the kind
of message received and the transmitter object.

 Generation of new events produced as
consequence of the defined behavior. It can
include answers to transmitter object.

 Statistical methods, if proceeds.
 To define the system behavior. This behavior should

include, al least, the SRR.
 To invoke the simulator initialization function, in

order to initialize simulator internal data structures.
 To start the simulation.
 To obtain results as statistics or accounting.

5.2 Working Model
When an animated object is created, a new event is sent
to the system. Unanimated objects will not generate any
event at the moment of creation. When the entire scene is
created, the computer game starts.
Scene simulation process is carried out independently of
the visualization process. During computer game
execution, the system generates an event for each screen
refresh. When events manager detects the event, two
things may happen:
 Exist already a screen previously calculated which is

waiting to be shown on screen. Therefore, there is no
reason to process a new render.

 The last calculated image is being shown on screen,
there is no screen available waiting to be shown. So,
a new rendering must be calculated.

The visualization freezes the simulation while it
generates the new image going through the scene graph.
Therefore, there is only necessary to go through the scene
graph once for each visualization as in typical games.
Each time a screen refresh ends, the graphic package
activates the screen calculation. So, next time a refresh
event is generated, will be carried out the visualization.
When the calculated frame rate is lower than the SRR,
DESK behavior will be equivalent to the studied games.
If the calculation power is high, computer will not lose
time calculating an image that will never be rendered.
This remainder computer power may be dedicated to
improve the simulation accuracy or other needs, as
opposed to these games (see point 3.1).
For example, let it be a hand grenade thrown to the air.
At the moment in which it is thrown, an event of blowing
is generated in 1.76 seconds, wherever it is. While it does
not blow, the hand grenade travels through a continuous
trajectory by air. Trajectory is sampled in screen SRR
times by second. Therefore, the hand grenade position
must be recalculated for each screen. That is done
generating an event each 1/SRR seconds. It is not
necessary to spend computer power simulating
intermediate states, since only the last one is shown at
screen. DESK simulation model is hybrid because it
carries out a CS, sampling system each 1/SRR seconds,
while it still bears discrete events.
DESK always performs SRR fps. So, sampling frequency
in DESK is constant assuming that there is computer

power enough. It does not depend on the game load or
computer power available.
The HS model bears implicitly nervous sampling because
those processes that present a great variability will
generate a great quantity of events consuming more
computer power. Those objects that do not generate
events do not overload the game. So, computer power is
distributed among all objects depending on their
behaviors.
5.3 Results
Coupled and decoupled models have been simulated in
the laboratory. Let it be: TS the time used by the
videogame to simulate a game step, TR the time spent to
render a frame, and, finally, νV the fps actually generated
by the videogame. The conclusion for CS decoupled
systems are:
1. SRR≥νV
2. If TS+TR≤1/SRR then SRR=νV
3. If TS+TR>1/SRR then TS+ TR≤1/νV
4. The amount of simulations is always equal or higher

than the amount of renderings
Point 2 gives the maximum performance because SRR is
achieved. Videogames behaves better in the point 2
situation than point 3. Using DESK HS reduces TS,
increasing the probability to operate under the conditions
of point 2.
6. CONCLUSION
The computer games analyzed follow an inefficient
simulation scheme because of they use CS and they do
not decouple visualization from simulation. Although CS
model is widely used in computer games and it works in
practice, this model becomes insufficient to simulate
accurately more complex behaviors like next generation
computer games, VR applications or interactive real time
graphics. HS allows a more accurate simulation than CS,
avoiding lost events and a disorderly execution of events
when the simulator has a limit in the computing power.
When DESK is used as a computer game kernel, it allows
HS and forces to decouple the system. So, the calculation
efficiency is increased and it improves the simulation
accuracy performing a better final result. Visualization
and simulation decoupling allows using parallel
techniques in order to increase computer game speed, to
bear more complexes computer games, professional
applications or to improve final visual result.
Since DESK supports nervous sampling, simulation
accuracy is improved, avoiding incorrect behavior to be
produced. Computer power is concentrated in simulating
those parts of the game with high rate of events
generation, dedicating less attention to those parts with a
lower events rate.
7. ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish
government CICYT TIC1999-0510-C02-01

8. REFERENCES
[Banks95] J. Banks, J.S. Carson, B.L. Nelson. Discrete-

Event System Simulation. (Prentice Hall, 1995)
[Bishop98] L. Bishop, D. Eberly, T. Whitted. Designing

a PC Game Engine. IEEE CG&A, vol. 18, no. 1,
January/February 1998, pp. 46-53

[Darken95] R. Darken, C. Tonnesen, K. Passarella. The
Bridge Between Developers and Virtual
Environments: a Robust Virtual Environment
System Architecture. Proceedings of SPIE 1995, No.
2409-30

[DMCd] www.idsoftware.com/archives/doomarc.html
[Fishman78] G.S. Fishman. Conceptos y Métodos en la

Simulación Digital de Eventos Discretos. (Limusa,
1978)

[Garcia00] I. García, R. Mollá, E. Ramos, M. Fernández
D.E.S.K.: Discrete Events Simulation Kernel,
ECCOMAS 2000, September 2000

[Giachetti02] M. Agus, A. Giachetti, E. Gobbetti, G.
Zanetti. A Multiprocessor Decoupled System for the
Simulation of Temporal Bone Surgery. Computing
and Visualization in Science, To appear

[Gobbetti95] E. Gobbetti, J.F. Balaguer. An Integrated
Environment to Visually Construct 3D Animations.
SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pp 395-398, August 1995. ACM
SIGGRAPH, Addison-Wesley.

[Pausch94] R. Pausch et al. Alice & DIVER: A Software
Architecture for the Rapid Prototyping of Virtual
Environments. Course notes for SIGGRAPH '94
course, "Programming Virtual Worlds".

[QKCd] www.quake2.com/kko/
[QKDoc] www.gamers.org/dEngine/quake/
[Reynolds00] C. Reynolds. Interaction with Groups of

Autonomous Characters. Game Developers
Conference Proceedings, March 2000.

[Roberson89] G.G. Robertson, S.K. Card, J.D.
Mackinlay. The Cognitive Coprocessor Architecture
for Interactive User Interface, UIST'89 Proceedings,
1989, pp. 10-18.

 [Shaw92] C. Shaw, J. Liang, M. Green, Y. Sun The
Decoupled Simulation Model for Virtual Reality
Systems. CHI'92, May 1992, pp. 321-328.

[SMPL] http://www.autoctrl.rug.ac.be/ftp/smpl/
[TOM02] www6.tomshardware.com/graphic/02q1/

020304/geforce4-09.html
[Wainer96] G.A. Wainer. Introducción a la Simulación

de Sistemas de Eventos Discretos. Technical Report:
96-005. Buenos Aires University.

[Watt01] A. Watt, F. Policarpo, 3D Games. Real-time
Rendering and Software Technology, (Addison-
Wesley, 2001) http://www.fly3d.com.br

[ZIRON] http://www.ziron.com/links/

