
GDESK: Game Discrete Event Simulation Kernel

Inmaculada García
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

ingarcia@dsic.upv.es

Ramón Mollá
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

rmolla@dsic.upv.es

Toni Barella
Computer Graphics Section

Technical University of Valencia
Camino de Vera S/N

 Spain (46022), Valencia, Valencia

tbarella@dsic.upv.esl

ABSTRACT
Simulation has been used traditionally to solve other areas problems. Real time applications like videogames use
typically a continuous simulation scheme. That way of operation has disadvantages that can be avoided using a
discrete event simulator as a game kernel. This paper proposes the integration of a discrete event simulator into
real time applications to control the applications simulation. The use of a discrete methodology avoids disorderly
events execution or the execution of cancelled events. This implies to use events in order to model the system
dynamics, the objects interaction and the objects behavior. GDESK is a discrete event simulator prepared to be
used as a videogame kernel.

Keywords
Videogames, simulation, discrete events, kernel

1. INTRODUCTION

Videogames Simulation Model
Videogames follows a scheme of continuous
simulation that couples rendering phase and
simulation phase [Pau95]. A study of different
videogames has been made, from simple videogames
[Ziron] to complex ones. Among the videogames
studied are Doom v1.1 [Ids][Doom], Quake v2.3
[Quake] and Fly3D [Fly3D][Wat01][Wat03]. They
have been selected because of their importance in the
videogames history or the availability of their source
code.

The videogames main loop has typically three phases
[Pau95]:

1. Test the user interaction.
2. Simulate. Videogame objects use to be included

in a scene graph. The scene graph is used both to
simulate and to render the scene. Simulation is
done traveling the scene graph and asking to
each object if it has something to do. Compute a
time step (tick) of simulation supposes to ask the
scene graph objects for pending simulation
events: movement, shooting,...

3. Render the current scene.
This main loop supposes:

• Videogames use a continuous simulation scheme.
Because the entire scene graph objects are
sampled in a world evolution. Simulation cycle
(time slot) is defined as the time elapsed in a run

of the program main loop (continuous simulator
sampling period).

• Simulation and rendering are highly coupled
(each world evolution always requires a full
world rendering).

That mechanism has disadvantages. The rendering
and simulation coupling disadvantages are:

• The system is not sensitive to times lower than
the sampling period.

• The simulation events are artificially
synchronized to match the sampling period. They
are not executed in the very moment when they
happen.

• The sampling frequency depends on topics that
can change during the game, such as available
computer power, world complexity, other active
tasks in system, network overload or current
simulation and rendering load. So, the sampling
frequency is variable and not predefined.

• A new simulation cycle requires always an entire
world rendering, although the frame can be
shown on the screen or not.

• Time generating renderings is wasted since many
frames will never be appreciated on screen.

The continuous simulation model disadvantages are:

• All objects in the scene graph are accessed,
although many objects will never generate
events. Some videogames allow to access only to
the active objects. Access through the scene

graph when many objects will never generate
events, is quite inefficient.

• Events are not time ordered. Events are executed
in the order in which the objects management
structure is accessed.

• The objects priority for simulation depends on
the objects situation in the scene graph.

• It is just possible that the simulation be
erroneous because of: the disorderly events
execution and the execution of cancelled events.

• The sampling frequency is the same for all
objects, independently of their requirements: If
objects behaviors do not match Nyquist-Shannon
theorem, they will not be simulated properly,
loosing events, not detecting collisions,... That is
to say, objects will be undersampled. On the
other hand, objects with a very slow behavior
may be oversampled.

Discrete Event Simulation
A real-time graphic application, like a computer
game may be considered a system [Ban01]. As a
system, it can be represented using modeling and
simulation techniques [Ban01][Wai96]. Attending to
the systems classification, based on the way the
system evolves in time [Wai96], a real-time graphic
application could be considered as a hybrid system.
In that, the continuous system evolution in time may
be altered by events not associated to the sampling
period.

Discrete event simulation [Fis78][Ban01][Sch99]
have been used to solve problems consisting on the
system analysis using modeling or to design systems.
Simulation is a skill used to solve other areas
problems such as [Kul03]: military applications,
science and engineering, learning and training and
management. Attempts to integrate simulation
techniques in computer graphics applications have
been made [Lee99][Ter88][Ree83]. But, the
employing of simulation techniques in computer
graphics is restricted to the use of modeling methods
as Petri Nets or queues [Lee99].

A discrete event simulator copes with discrete
systems, continuous system and hybrid systems
[Ban01].

2. OBJECTIVES
The proposal is to use a discrete events simulator as a
computer game kernel in order to achieve the
following objectives:

• Increases the videogame quality:�

• Only those objects that generate events will
be checked, avoiding to access the
remainder objects.

• Events are executed ordered in time. There
is not disorderly events execution.

• Each object defines its own sampling
frequency. It is defined according to the
objects behavior.

• The level of detail of simulation increases:
unnoticed events are now simulated.

• The system is sensible to times lower than
the sampling period, since every object has
its own sampling period.

• Sampling period does not change depending
on topics as the system load or the model
complexity.

• Increase the videogame efficiency:�
• They make a better use of the computer

power. The released power can be used to
get better other game parts (such as game
artificial intelligence or kinematics).

• Games can be executed in machines with
lower power.

• Real-time distributed applications can be run
in machines with different computing power.

3. GDESK ORIGINS: DESK
GDESK is the adaptation of DESK [Gar00] to the
videogame kernel requirements.

DESK is a discrete event simulator kernel. It is a
universal object oriented package developed using
ANSI C++. It may be used both as a fast prototyper
and as a final model descriptor simultaneously.
DESK can simulate whatever model. Although it uses
dynamic memory to avoid computer or compiler
lacks, no penalty in performance is noticed due to a
client pool that avoids unnecessary calls to the
Dynamic Memory Manager (DMM). The main
DESK characteristics are:

• General purpose simulator.
• Powerful enough to manage whatever system.
• Flexible enough to allow fanciful behaviors.
• No restrictions to the simulation model.
• Support to real-time simulation.
• Support to external functions.
• Easy model definition and implementation. The

system model definition must be done defining
the simulation components and their
characteristics.

• Easy debugging and changing.
• Implemented as a C++ library to allow using in

the simulation other C++ libraries.

DESK Structure
The DESK basic entities are:

• Events: model the change of state of a client in
the system.

• Clients: are passive entities that support the
events data structure. They can be created,
destroyed or modified as convenience during the
simulation.

• Service stations: are the elements that give
service to clients during simulation.

Dinamyc Memory

Manager

System

Events
Pool

Events
Events

Events
Events

Dispatcher
Figure 1. DESK structure

The DESK key structures are (figure 1):

• Dispatcher: contains the events that are going to
happen in system, ordered by time.

• Events Pool: each time a new event is necessary
in system, the DMM must be called. When the
events finish its function and leaves the system,
the DMM must be called again to destroy it. This
is inefficient, because the DMM is constantly
being called. In order to minimize the DMM
calls, an events pool is used. The pool is a way to
maintain the events that are not actually in the
system. Events are being created during
simulation. In a given moment, they finish and
leave the system, and then they are inserted in
the pool instead of being destroyed. When a new
event is necessary in the system, the simulator
verifies if there are events in the pool and an
event will be extracted from the pool if the pool

is not empty. The DMM will be called if and
only if there are not available events in the pool.

DESK Suitability for Integration
DESK accomplishes the necessary conditions in a
discrete event simulator to the integration into a
videogame:
• It must have open source code:

• It is necessary to know how the simulator is
implemented in order to know if it is
efficient enough.

• It is necessary to modify the simulator
implementation.

• The discrete event simulator must be
implemented:
• As a library.
• In a general purpose language and

commonly used in the videogames
implementation and widely used by the
scientific community.

• It must support:
• Dynamic data structures.
• OpenGL, DirectX, … �
• Software engineering new technologies.

4. GDESK
GDESK is the adaptation of DESK to be used as
videogames kernel.

Using a discrete event simulator as a simulation
engine for computer games does not imply to change
topics as the structure of the scenes description files
or characters. It does not modify the file parser, the
scene graph, the rendering techniques applied or
videogame style. It only modifies the system events
management and introduces a discrete event scheme.
It only focuses on the videogame events management.
Therefore, it can be applied to any kind of video
game and rendering format (2, 2.5 y 3D).

Objects Interaction
GDESK treats any element that appears in a
computer game as an object, animated or unanimated.
A hierarchy of objects can be established whenever
the programmer defines it. The whole system is a set
of objects generating events. There are two objects
types in a videogame:
• Game components objects: all videogame

functional components must be modeled as
objects generating events. They are the objects
that control the game. Examples of system
objects are console, render, multi-user control or
server control. That category includes the object

that translates the user events into GDESK
events.

• Rendered game objects: avatars, missiles,
walls,...�

All objects in nature interact by means of particles
exchanging. So, objects in GDESK, interact by
means of events exchange. Objects in videogames
interact and evolve using the events generation
mechanism. Both objects types use the same
mechanism. An event in GDESK is modeled by
means of a client that contains the necessary
information to develop an adequate interaction. The
events mechanism in GDESK is similar to the
message passing mechanism.

Events
The system dynamic is controlled by events. Events
model the objects behavior. An object only acts when
an event is produced and sent to it. When the object
receives the event, it can change its behavior and it
can generate other events to other objects or to itself.
The change in the object behavior depends on topics
as the object that generates the event, the event kind
or the event content.

Events uses are:

• Objects communication: when the object A needs
a communication with the object B, A generates
an event addressed to B. The object B could act
or change its behavior as a consequence of the
event arrival. Only the object that receives an
event may generate more events.

• Model the object behavior: an object only acts as
an event arrival consequence. When an object A
must change its own behavior, A generates an
event addressed to itself. As a consequence of an
event arrival from itself, the object A modifies its
state as convenience.

When a projectile collides with a wall, the projectile
generates an event to the wall indicating the collision
in that very moment. This event includes also the
necessary parameters (mass, point of impact,
velocity, projectile kind,...). The wall reacts to the
event, establishing how to change its state (totally or
partially knocked down, to be performed, do
nothing...,). After that, the wall returns an event to the
projectile indicating how the event has modified the
projectile attributes. The projectile will determine
what should do with that new event: to be deformed,
fall to floor, change velocity (module and
direction),… The projectile will not accept this kind
of event if it does not comes from the wall the
projectile has collided with.

As a consequence of event, the behavior of the
receiving object depends on the object transmitter
and the kind of event sent. The receiving object will
determine if it is sensitive to that kind of event
coming from that specific object. If is it so, the object
will determine what kind of behavior is to be
presented. For example, if a small stone collides with
a wall, perhaps the wall attributes will not be affected
with that event (depending on the weight of the
stone). If the projectile is a missile, the wall can
disappear. The same event with different transmitting
object causes different behaviors in the same
receiving object; but also in the transmitter (the bullet
rebounds if the wall is made of concrete and it is
incrusted if the wall is made of clay). Different kinds
of objects have different behaviors.

The number of events generated in an interaction
depends on how programmer models the interaction.

Figure 2 shows another example of objects
interaction using events.

Pool

1. Dog initial state
2. Event A: user event
that indicates the dog
that changes its position
until it reachs the tree

3. Dog final state: it modifies
its position as the event A
consequence

4. The dog releases the
event A

6. Event B: the dog tells
to tree it has interacted
with it

5. The dog request an
empty event (event B) to
the pool

Figure 2. Events generation example

An event needs to include the following information:

• Source object: the object that generate the event.�
• Destination object: the object receiving the event

action.�
• Event time stamp. It is the given time when the

event must happen. It is a relative time. It defines
the time that must pass until the event will be
executed. A value cero in the time stamp
indicates the event is instantaneous, so the event
must happen in the actual time. The object time
does not depend on a local objects clock. The
object works with time intervals. The event time
stamp will be converted to a global simulation
time by the dispatcher.�

• Videogame information: the interaction between
objects or the object behavior modeling needs

some parameters to model that interaction. A
destination object A may behave into different
ways depending on the information associated to
the event sent by the source object B and the
object B itself. Videogame attributes are defined
by the programmer (kind and number), because
the videogames attributes are highly dependent
on the specific videogame. The programmer has
the responsibility to synchronize the data type
with the information required.

Obtain a client (event) from the
pool

Pool

Fill the event parameters

Send the event

Capture the event

Insert the event orderly in queue

Obtain next event from queue (if
event time has been achieved)

Send the event to the destiny object

Receive the event

Act consecuently: change state,
generate events,...

Throw away the event

event

event

Source Object
generates an
event

Dispatcher

Destiny object
receives an event

Figure 3. Event life cycle

Dispatcher

Event

Event

Event

Pool

Event
request

and
release

Event
request

and
release

Event
request

and
release

Event
request

and
release

Figure 4. Events communication mechanism

Figure 3 show the full event life cycle. An object
wants to interact with other object. So, it generates an
event directed to other object. The event is really
caught by the discrete event simulator dispatcher
(figure 4). The dispatcher stores the event ordered by
time until the event time stamp is reached. At this
moment, the dispatcher processes the preceding
events.

GDESK Structure
The main GDESK components are the dispatcher and
the events pool. They are similar to the DESK
structures. The differences are the queue structure to
maintain events ordered and the way the dispatcher
manages the simulation clock to match it with the real
time.

Events

Time Stamp Time Stamp Time Stamp Time Stamp

Event Event Event Event

7 56

1211
10

8 4

2
1

9 3 Simulation
clock

Dispatcher

Figure 5. GDESK dispatcher

The dispatcher (figure 5) manages the videogame
events. It catches the events sent from one object to
another and stores them ordered by time.

The dispatcher synchronizes the videogame objects
events. The videogame object event time is relative.
It defines an interval of time that will pass when the
event will be executed by the dispatcher. The relative
event time is converted to an absolute videogame
time using the global simulator clock. The dispatcher
stores the event ordered by that absolute simulation
time.

Once an event is stored, the dispatcher goes on
working, testing if the first stored event time stamp
has reached the real time. If it is, the dispatcher sends
the event to the destiny object.

The dispatcher main structures are:

• The global simulation absolute clock.
• The structure to store ordered events.
The main difference between a dispatcher in a
traditional discrete event simulator and the dispatcher
in the discrete event simulator integrated into the
videogame kernel is the time management. The time
management in a discrete event simulator does not
take care of real time. The simulator has an internal

clock that evolves each time an event happens. Event
time in videogames must match the real system time.
An event only happens if the event time stamp is
reached and exceeded by the real system time. At this
moment, the simulator clock is modified with the
event time.

The dispatcher uses two clocks:

• The simulation global clock: it is updated each
time an event is processed.

• The real time clock or the system clock: it is used
to test if the events time is reached or
overlapped.

The structure used to maintain events ordered by time
may be a heap, a queue,...

Event

Empty events

Event Event Event EventEvent

Figure 6. GDESK events pool

The events pool (figure 6) is used to store the events
that are not currently in the system. Its function is to
minimize the DMM calls. The objects ask the pool
for empty events. So, there is a direct communication
between the videogame objects and the simulator
pool.

System Dynamics
The system dynamic is shared by the objects and the
dispatcher. Events are passive entities that support the
objects communication. The whole process can be
seen in the figure 7.

Simulation Clock
Continuous system works using a global clock that
defines steps in the simulation process. For each step
the whole system is evolved and rendered (coupling).
The global clock in a continuous system has the
function to define a simulation step to synchronize
objects. But, discrete systems lack from steps for the
system evolution.

In a discrete system, objects act in response to events
received by other objects or by themselves. If an
object is stopped, it has no motion events, although it
can have other pending events (for instance, a
counting down bomb). A moving ball shows a
continuous behavior that has to be sampled matching
the Niquist-Shannon theorem. The ball implements
the sampling frequency (SF) by sending an event to
itself every 1/SF seconds.

Each videogame object step could be constant or
variable depending on the object behavior and other
objects interaction. In this case, the step may be
different for each object. To have a different step for
each object does not suppose necessarily to have a
clock for each object. The dispatcher synchronizes
the objects event time to match with the global
simulation clock. That global clock is modified each
time an event is processed by the dispatcher.

A continuous system is a discrete system where the
steps of all objects are constant and identical
(including the render object). The step value is highly
dependent on the system load and power.

Dispatcher stores the
event ordered by time

Pending events?

Pop-up an event

Send the event to the
destiny object

The object changes its
state

The object generates an
event

Yes

No

The user generates an
event

The user event is
translated to a simulator

event

System objects
initialization: initial events

generation
Objects

simulation
control

Dispatcher
simulation

control

Objects
simulation

control

Sleep until next event

Wake up

Figure 7. System dynamics

5. GDESK INTEGRATION
Any object in a videogame must inherit from the
GDESK basic object entity and to provide it with the
functions to generate events and to be sensitive to the
event arrival:

• Send event function: it takes a previously filled
event and it sends the event to another object
through the dispatcher. The videogame
programmer uses that function as the event
receptor was the destiny object. The simulator

dispatcher will send the event to the destiny
object when the event stamp will reach the real
time.

• Receive event function: it is a virtual function.
That function starts to work when an object
receives an event. As an object only acts as a
consequence of an event arrival, the receive
event function model the change of state and the
object response to an interaction. That function
implementation depends on the videogame
programmer. The function implementation
models the object behavior using the events
mechanism. That function is used each time an
objects interaction is needed.

6. THE RENDERING PROCESS
USING GDESK
GDESK allows the independence of the simulation
process from the rendering process (simulation phase
and rendering phase decoupling). If simulation and
rendering are decoupled, scenes are rendered more
quickly even when the higher-level animation
computations become complex [Sha92]. This
decoupling increases system performance [Dar95].

The render process is controlled by the render object.
The render object is similar to other videogame
objects. It models its behavior using the event
generation mechanism, so the rendering process must
be started using an event. When a render event is
generated the frame render is started.

In the system initialization, an event is sent to the
render object. That event starts the render
mechanism. Once that initial event is generated, the
render object has an autonomous behavior. When the
render object receives an event:

• The render object renders a frame.
• Once the frame N is rendered, the render object

sends an event to itself in order to perform the
next frame rendering (N+1). The render object
generates an event addressed to itself. The event
time is the time interval until the next frame
render. So, the render object will receive an
event from himself once the event time will pass.

The render object must decide the very moment to
generate a new render event, that is, the time when a
new frame is calculated. The screen refresh rate
depends on the number of events generated by the
render object.

The screen refresh rate can be fixed to the videogame
needs. The screen refresh rate is defined by the
videogame programmer:

• It can be defined by the programmer to have a
screen refresh rate constant during all videogame

execution. The render object events time stamp
is a constant value previously defined.

• It can be an “adaptable rendering”. The
programmer defines a mechanism to change the
render object events time stamp depending on
topics as the system load. That process is fully
defined by the programmer. So, that process
allows the videogame to adapt the render process
dynamically to the videogame characteristics.

Although the render process is fully defined and
controlled by the programmer, the render object
objectives must be:

• To generate only as many renders as screen
refreshes. If the number of frames generated is
higher, the computer power is wasted.

• The given moment of event generation must
allow to render a frame before the next screen
refresh. That supposes to show always the latest
frame.

Discrete decoupled system can avoid unnecessary
renderings in systems with low computer power
(simulation time and render time is bigger than the
refresh interval). The render object can decide to
generate a render event in a refresh interval if it
knows that there is a possibility that the frame will be
shown in the screen. Alternatively, it can decide to
put off the render to the next refresh interval and go
on simulating.

The render object is a common videogame object.
The event generation mechanism is similar to other
videogame objects. It only uses that mechanism to
model its behavior. But, that mechanism could be
used to interact with other videogame objects, in
order to adapt the system to more complex rendering
behaviors.

7. CONCLUSIONS
Current videogames follow a scheme of simulation
phase and rendering phase coupling. They use a
continuous simulation model. That way of operation
is inefficient and may produce erroneous simulations.
Using a discrete event simulation paradigm, those
problems can be avoided. That paradigm can be
achieved using a discrete event simulator as a
videogame kernel. GDESK is the adaptation of
DESK (discrete event simulation kernel) to
videogames kernel. GDESK allows the complete
system to work using discrete events. The videogame
is a set of objects interchanging events. The events
are managed by the GDESK dispatcher. It executes
the events ordered in time. The GDESK integration
into a videogame produces the change of the
videogame simulation paradigm. That produces a

more accurate simulation and saves computing power
due to the saves of unnecessary renderings.

8. ACKNOWLEDGEMENTS
This work has been funded by the Generalitat
Valenciana OCYT CTIDIB/2002/344.

9. REFERENCES
[Ban01] J. Banks, J.S. Carson II, B.L. Nelson, D.M.

Nicol. Discrete-Event System Simulation.
(Prentice Hall, 2001).

[Dar95] R. Darken, C. Tonnesen, K. Passarella. The
Bridge Between Developers and Virtual
Environments: a Robust Virtual Environment
System Architecture. Proceedings of SPIE 1995,
No. 2409-30

[Doom] Doom World. http://doomworld.com/
[Fis78] G.S. Fishman, Conceptos y Métodos en la

Simulación Digital de Eventos Discretos,
(Limusa 1978).

[Fly3D] FLY3D Main Page. http://www.fly3d.com.br
[Gar00] García, I. Mollá, R. Ramos, E. Fernandez,

M. D.E.S.K. Discrete Events Simulation Kernel.
Eccomas conf.proc. 2000

[Ids] Idsoftware Page.
www.idsoftware.com/archives/doomarc.html

[Kul03] J. Kuljis, R.J. Paul, Web-based discrete
event simulation models: current status and
possible futures, Simulation and gaming. v.34
no.1. (2003).

[Lee99] G.S. Lee, Towards an integration of
computer simulation with computer graphics.
Proceedings of the Western Computer Graphics
Symposium. (1999).

[Pau95] R. Pausch, T. Burnette, A.C. Capehart, M.
Conway, D. Cosgrove, R. DeLine, J. Durbin, R.
Gossweiler, S. Koga J. White. A Brief
Architectural Overview of Alice, a Rapid
Prototyping System for Virtual Environments.
IEEE Computer Graphics and Applications,
1995.

[Quake] Quake Developers Page.
www.gamers.org/dEngine/quake/

[Ree83] W. T. Reeves. Particle systems: A technique
for modeling a class of fuzzy objects. In
Computer Graphics, pages 59–376. ACM
Siggraph, July 1983

[Sch99] T.J. Schriber, D.T. Brunner. Inside discrete-
event simulation software: how it works and why
it matters. Winter Simulation Conference. 1999.

[Sha92] C. Shaw, J. Liang, M. Green, Y. Sun The
Decoupled Simulation Model for Virtual Reality
Systems. CHI'92, May 1992, pp. 321-328.

[Ter88] D. Terzopoulos, A. Witkin, Physically Based
Models with Rigid and Deformable Components.
IEEE Computer Graphics and Applications, p.
41-51. (1988).

[Wai96] G.A. Wainer. Introducción a la Simulación
de Sistemas de Eventos Discretos. Technical
Report: 96-005. Buenos Aires University.

[Wat01] A. Watt, F. Policarpo. 3D Computer Games
Technology: Real-Time Rendering and Software.
Addison-Welsey. 2001.

[Wat03] A. Watt, F. Policarpo. 3D Computer Games.
Addison-Welsey. 2003.

[Ziron] Ziron Page. http://www.ziron.com/links/

