AL

[
td

fb

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science

2148

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saartand, Saarbriicken, Germany

Volume Editor

Alexander Nareyek S

GMD FIRST o

Kekuléstr. 7, 12489 Berlin, Germany
E-mail: alex @zi-center.com

Cataioging-in~Puincation Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Local search for planning and scheduling : revised papers / ECAI 2000
Workshop, Berlin, Germany, August 21, 2000. Alexander Nareyek (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;
Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2148 : Lecture notes in
artificial intelligence)

ISBN 3-540-42898-4

CR Subject Classification (1998): 1.2.8, £2.2, G.1.6, G.2.2
ISBN 3-540-42898-4 Springer-Verlag Rerlin Heidelberg New York

- This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of transiation, reprinting, re-use of ilustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks, Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
i its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liabie for prosecution under the German Copyright Law,

Springer-Verlag Berlin Heidelberg New York :
2 member of BertelsmannSpringer Science+Business Media GmbH

httpifwww.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10845478 66/3142 §43210

Preface

With the increasing deployment of planning and scheduling systems, developers
often have to deal with very large search spaces, real-time performance demands,
and dynamic environments. Complete refinement methods do not scale well, ma-
king Jocal search methods the only practical alternative. A dynamic environment
also promotes the application of jocal search, the search heuristics not normally
being affected by modifications of the search space. Furthermore, local search is
well suited for anytime requirements because the optimization goal is improved
iteratively. Such advantages are offset by the incompleteness of most local search
methods, which makes it impossible to prove the inconsistency or optimality of
the solutions generated. Popular local search approaches include evolutionary al-
garithms, simulated annealing, tabu search, min-conflicts, GSAT, and Walksat.
The first article in this book ~ an invited contribution by Stefan VoB — gives an
overview of these methods.

The book is based on the contributions to the Workshop on Local Search for
Planning & Scheduling, held on August 21, 2000 at the 14th European Confe-
rence on Artificial Intelligence (ECAI2000) in Berlin, Germany. The workshop
brought together researchers from the planning and scheduling communities to
explore these topics with respect to local search procedures. After the worksheop,
a second review process resulted in the contributions to the present volume.

Vofl's overview is followed by two articles, by Hamiez and Hao and Gerevini
and Serina, on specific “classical” combinatorial search problems. The article by
Hamiez and Hao addresses the problem of sports-league scheduling, presenting
results achieved by 2 tabu search method based on a neighborhood of value
swaps. Gerevini and Serina’s article addresses the topic that dominates the rest
of the book: action planning. It builds on their previous work on local search
on planning graphs, presenting a new search guidance heuristic with dynamic
parameter tuning.

The next set of articles deal with planning systems that are able to incor-
porate resource Teasoning. The first article, of which I am the author, makes it
clear why conventional planning systems cannot properly handle planning with
resources and gives an overview of the constraint-based EXCALIBUR agent’s plan-
ning system, which does not have these Testrictions. The next three articles are
about NASA JPL's ASPEN/CASPER system. The first one — by Chien, Knight,
and Rabidean — focuses on the replanning capabilities of local search methods,
presenting two empirical studies in which a continuous planning process clearly
outperforms a restart strategy. The next article, by Engelhardt and Chien, shows
how learning can be used to speed up the search for a plan. The goal is to find a
set of search heuristics that guide the search as well as possible. The last article
in this block — by Knight, Rebideau, and Chien - proposes and demonstrates,
a technique for aggregating single search moves so that distant states can be
reached more easily.

A2 Preface

The last three artjcles in this book address topics that are not directly related
to local search, but the described methods make very local decisions during the
search. Refanidis and Vlahavas describe extensions to the GRT planner, e.g., a
hill-climbing strategy for action selection. The extensions result in much better
performance than with the original GRT planner. The second srticle — by Ona-
india, Sebastia, and Marzal — presents a planning algorithm that successively
refines a start graph by different phases, e.g., a phase to guarantee comple-
teness. In the last article, Hiraishi and Mizoguchi present a search method for
constructing a route map. Constraints with respect to memory and time can be
incorporated into the search process.

I wish to express my gratitude to the members of the program committee,
who acted as reviewers for the workshop and this volume. I would also like to
thank all those who helped to make this workshop a success ~ including, of
course, the participants and the authors of papers in this volume.

June 2001 Alexander Nareyek

Workshop Chair

Table of Contents

Invited Paper

" Meta-heuristics: The State of the Art........ e PR e 1
Stefan Vofi

Combinatorial Optimization

Solving the Sports‘League Scheduling Problem with Tabu Search 24
Jean-Philippe Hamiez, Jin-Kao Hao

Lagrange Multipliers for Local Search on Planning Graphsc.covtn 37
Alfonso Gerevini, Ivan Serina

Planning with Resources

Beyond the Plan-Length Criterfoncovvvnenn e 55
Alezander Noreyek

An Empirical Evaluation of the Effectiveness
of Local Search for Replanningocveeerrrrnrerraienrienrerees 79
Steve Chien, Russell Knight, Gregg Robideau

Board-Laying Techniques Improve Local Search
in Mixed Planning and Scheduling ... 95
Russell Knight, Gregg Rabideau, Steve Chien

Empirical Evaluation of Local Search Methods
for Adapting Planning Policies in a Stochastic Environmentooovens 108
Barbara Engelhardt, Steve Chien

Related Approaches

The GRT Planner: New Resultsoveroriromiranaranmanenes 120
Ioannis Refanidis, Toannis Viehavas

Incremental Local Search for Planning Problemscoovvenrs ... 139
Eva Onaindia, Laura Sebastia, Eliseo Marzal

Map Drawing Based on a Resource-Constrained Search
for a Navigation System chvoinrmi e 158
Hironori Hiraishi, Fumio Mizoguchi

AUEOr TGEX .ttt 171 .

Incremental Local Search for Planning Problems

Eva Onaindia, Laura Sebastia, and Eliseo Marzal

Dpto. Sistemas Informaticos y Computacion
Universidad Politecnica de Valencia

Clamino de Vera s/n, 46022 Valencia, Spain

{onaindia,lstarin,emarzal}@dsic.upv.es

Abstract. We introduce a new approach to planning in STRIPS-like
domains based on an incremental local search process. This approach
arises as an attempt to combine the advanteges of a graph-based anal-
ysis and a partial-order pianner. The search process is carried out by
a four-stage algorithm. The starting point is a graph, which totally or
partiaily encodes the planning problem. The aim of the second phase is
to obtain a first set of actions of a solution plan, the third stage guaran-
tees the completeness and optimality of the generated solution and the
fourth stage, a partial-order planner, completes the process by finding
the missing actions of the final solution plan, if any.

1 Introduction

Graphplan-like or SATPLAN-iike planners have shown to outperform classical
planners for most of the standard planning domains. However, these two propo-
sitional approaches do not exhibit good results for large-sized problems due to
" the size of the graph they have to deal with. We tested STAN [3] and Blackbox
6] on large problems from the blocksworld domain and noticed that none of them
were able to solve problems involving more than fifteen blocks.
Our motivation is to develop a new planning approach, which also offers
a good performance for large-sized problems. In order to tackle this issue, we
introduce a search method, which integrates a technique that incrementally ex-
ploits the problem knowledge and a Partial-Order Planner (POP). Our method
is executed in four stages:

— The aim of the first stage is to generate a graph containing a set of actions.
This graph may include all actions of a solution plan.

— The result of the second stage is a more refined graph which only contains
a subset of actions which will necessarily appear in a correct solution.

— The third stage takes the solution obtained from the previous stage and
returns a new improved partial plan. The purpose of this stage is to guarantee
the completeness and optimality of the generated solution, i.e., to ensure that
(2) this partial solution will eventually lead to a final pian, if a solution exists
for the given problem, and (b) the plan will be optimal. This is achieved by
finding a partial consistency order between the action nodes in the graph.

A. Nareyek {Ed.): Local Search for Planning and Scheduling, ENAJ 2148, pp. 139157, 2001.
© Springer-Verlag Berlin Heidelberg 2001

140 E. Onaindia, L. Sebastia, and B. Marzal

At this stage unsolyahle problems are detected and optirnal solutions are
found. In some cases, tp, graph resulting from this phase will comprise all
the actions of a fing] solution plan. o

~ The fourth stage implements 5 POP which is aimed at adding the missing

actions for the final play 4pg finding a total ordering relation among all the
actions in the plan,

We present here a local geqyc), approach to planning which, starting from an

initial graph generated frop the problerm, iteratively improves the partial plan
contained in this graph. Th second stage obtains a plan which may be a final
valid solution or which Possibly contains some unsatisfied preconditions and/or
inconsistent ordering relationg between actions. Then the third and fourth stéfgffs
repair the flaws in the pla, by choosing the “best” choice for each flaw. T]'cns' is
done by applying different criteria based on the graph properties and’ heuristics
to measure the aPProPriatencey of one choice with respect to another.

2 Creating the Problem Graph

The first phase of the algorit
expaasion. This graph
encode the planning

hi creates a graph inspired in a Graphplan-like
» hamed Problem Graph (PG), may partially er.totaﬂy
Problem, The PQ is a directed, layered graph with two
kinds of nodes (literals ang actions) and two kinds of edges (precondition-edges

and add-edges). The levels qlyery e action levels containing action nodes and
literal levels containing liters) nodes

— An action level 4; consigtg of all action instantiations a,, which satisfy these
two requirements:
« all the preconditiong

d f a;) are present in the previous literal level L;_1
an,

* aji does not oceur iy any previous action level
~ A literal level L; is a get of propositions implictly representing the d%fferent
world states reachable after executing the actions in Aj. More specifically,

the set of literals in [i defined as L;_; U AddEff(a)? Va € A4;, being a an

s Sopi 1
action Instantiation in A

The first level in the Py i the literal level Lo and it is formed by all the
literals in the initial situatioy A, consists of all action instantiations which are
applicable in Lo. Ly is the gt of literals in Lo plus the add effects of each af:t}on
in A; and so forth. The Pg creation terminates when a literal level containing
all the literals from the gog) situation is reached in the graph or-when no new
actions can be applied. _

It must be noticed that PG is neither a state-space graph nor a Planning
Graph [1]. There are two Main differences with respect to a Planning Graph:

" AddEF, DelEff and Pre stang for the add effects, delete effects and preconditions of
an action respectively.

Incremental Local Search for Planning Problems 141

a) Levels in the PG do not stand for time steps but for instantiation steps which
can comprise more than one execution step. An action level A; denotes that
all the actions in A; will be executed at a time step t > 4, and at least one
action from A;..; must be executed firstly.

b) Our PG does not take into account mutual exclusion relations between ac-
tions, so two actions in a level may interfere with esch other, be comple-
mentary or independent actions. The PG is created by a forward-chaining
process which simply adds the positive effects of actions.

For all the tested domains {see Section 5), except the hanoi problem, all the
necessary actions of a valid solution already appeared in the PG. This cannot be
always guaranteed because, as it was said above, the PG generation terminates
when all the literals from the goal situation are present in a literal level, even
though additional actions could be applied in this final level. The way of creating
the PG ensures that the majority of propositions that would be generated with
a systematic search method are obtained once the final literal level is reached.

The advantage of the PG is that its size is much smaller than the Planning
Graph and the cost of creating this graph is hardly appreciable even when dealing
with large-sized problems.

In the following, we illustrate the process of creating the PG for the Sussman
anomaly problem in the blocksworld domain. Table 1 shows the initial literal level
Lo which consists of one node for each proposition in the initial situation. Action
level A; contains the two applicable actions in the initial situation, unstack C A
and pickup B, and Ly all the literals at L plus the add effects of the two actions at
Aj;. The column to the right of A; shows the numbers given to the preconditions
and add effects of each action (P stands for preconditions and E stands for
effects).

The process carries on with action level Ay (Table 2). At this level, seven
action instantiations, different from those in A;, are found. The literal level Lo
is created by adding the add effects of the actions at A (literals numbered from
10 to 14). This table also shows the final action and literal levels. The two literals

Table 1. Problem graph for the Sussman anomaly (1)

Lo Ay L
on A table [1lunstack C A|P={4,56}on A table |1
E={78}
clear B © |2|pickup B P={2,3,6}clear B 2
E={0}
on B table |3 on B table {3
onCA 4 onC A 4
clear C 5 clear C 5
arm-empty |6 arm-empty |6
holding C |7
clear A 8
holding B 18

142 E. Onaindia, L. Sebastia, and E. Marzal
Table 2. Problem graph for the Sussman anomaly {2)
Aa Ly As Lg
pickup A |P={1,6,9}|on A table |1 junstack C B|P={5,6,12}on A table |1
E={10} E={2,7} _
putdown BiP={8} lclear B 2 |unstack B C|P={2,6,13]clear B 2
E={2,3,6} E={5,8}
putdown CiP=={T} on B table {3 |unstack B A|[P={2,6,14}cn B table |3
E={5,6,11] E=:{8,0}
stack CB [P={2,7} JonCA 4 stack AB [P={2,10}|onCA |
E={56,12] £={6,9,15}
stack C A P={79} |clear C 5 [stack A C |P={5,10} |clear C 5
E={4,5,6} E={6,9,16}
stack B C [P={5,8} |arm-empty|6 |putdown A |P={10} |arm-empty b
E={2,6,13} . E={1,6,9}
stack B A {P={89} holding C {7 holding C 7
E={26,14} _
holding B |8 holding B i8
clear A 9 clear A 9
holding A |10 holding A {10
on C table 11 on C table {11
on CB 12 on CB 12
on B C |13 on B C (1§
on B A 14 on B A 14
on AB |18
on A C 16

from the goal situation, on B C and on A B, are present at literal level L3 and
the PG creation is completed.

3 Description of the Search Method

The search process itself is carried out in two stages. The output from both
stages is a graph, each representing an improved plan.

3.1 The Basic Graph

The objective of this phase is to find the appropriate actions to satisfy the goal
literals, then the actions to satisfy the subgoals (preconditions) of the former
actions and so on. The result is a directed, layered graph with only action nodes
named Basic Graph (BG). The number of levels in the BG is the number of
action levels in the PG plus two additional levels, an initial and a final action
level. The former contains one action with effects and no preconditions and the
latter contains one action with preconditions and no effects. The effects of the
initial action ag arve the literals in the initial situation and the preconditions of

Incremental Local Search for Planning Problems 143

the final action a, are the goal literals. An edge or causal link a; — a; denotes
that a precondition of a; is solved by means of an add effect of a;.

The process starts with the preconditions of a,, and attempts to find a set
of actions in the same or any previous action level having these goals as add
effects. The preconditions of these actions form a new set of subgoals and this
operzation is repeated until each literal has been processed.

In order to find a consistent causal link for each subgoal, the search method
applies the following property:

Property 1 (literal consistency). A literal p required by an action ., (p €
Pre{anm)} és said to be consistent if these two requirements hold:

1. there is @ sequence of actions a; — Gips...Gme1 — @Gp Such thot p €
AddEff(a;} and p ¢ DelEff(a;) Vi€ [{ +1,m ~ 1]

2. for each action ap such that p € DelEff(ay) there is a sequence ap -
Qit] -+ Gmei 3 O With an action a;, [€ [k 4+ 1,m — 1}, such that p €
AddEff(a;).

The first part of the property states that there must exist an action with p
as an add effect'and no actions deleting p must appear after that action (Figure
1(1)). The second part states that for each action which deletes p there must
exist an action ordered after it which produces p (Figure 1(2)).

(D——*O———»O oooo———»—
<2)———>—o ¢eeO

Fig. 1. Literal consistency property. Literals above each node represent the precondi-
tions of actions and literals below the nodes denote add and delete effects.

In order to check literal consistency it is necessary to propagate effects of an
action a; each time a causal link a; — a; is asserted. The propagated effects of
an action @, are computed by means of the following procedure:

1. PDelEff(ag) =DelEff(ag)
PAddEff{ay) =AddEff(ag)

2. Let po,p1,- .., Pn be the paths in the graph that have a; as destination node.
Let A = {ag,j—1,01,j—1,-++10n -1} be the set of predecessor actions of a;,
each corresponding to a path.

144 E. Onaindia, L. Sebastia, and E. Marzal

a) PAddEffg?) = {z € PAJdEff(a;) : a; € A/(Jax € AAz € PDelER(ar)) —
ap < Q;

PDelEff(a;) = {x € PDelEff(a;) : a; € A/(Jar € ANz € PAddE(ay)) —
Op < ai}

b) PAJEff(a;) =PAddEff(a;)—DelEff(a;) U AJJEff(a;)
PDelEff(a;) =PDelEff(a;)~AddEff{a;) U DelEff(a;)

The literal consistency property determines that a precondision pofan action
a; is consistent if the propagation of effects from the initial action ag to a; returns
that p € PAddEff{a;) and p ¢ PDelEff(a;) at step 2(a) from the above procedure.
Figure 2(a) shows an example of a consistent precondition, p, for the action ay

and Figure 2(b) shows that the precondition p of action ay is still an inconsistent
literal.

(b

Fig. 2. Example of a consistent and an inconsistent literal

The literal consistency property guarantees that, when a problem is solvable,
all the actions in the BG form a part of a correct solution, although all necessary
actions may not appear in the BG. However, it is not possible to prove that such
a solution exists or that the set of actions leads to an optimal solution. This will
be the objective of the next stage. ‘

Basically, the BG represents a plan which contains optimal sequences of
actions to achieve each subgoal literal independently. If property 1 does not hold
for all action preconditions, then it means that some of the subgoal literals cannot
be satisfied and consequently the BG is not created. Let's take the example in
Figure 2(b). If p stands for arm-empty and the only action having p as an add
effect is the initial action ao (a; in the example) and there is not an operator
putdown, then the BG cannot be created.

The conflicts detected at this stage are only those which appear in a same
sequence of actions, Conflict between actions of different séquences will be dis-
covered at the next stage. Finally, it must also be noticed that there might be
actions in the PG which belong to a correct solution and are not discovered
during the generation of the BG.

? ar < a; denotes an ordering relation between ap and o; such that ai is executed

before a,

Incremental Local Search for Planning Problems 145

Figure 3 shows the BG for the Sussman anomaly problem. Action stack A B
is introduced in the BG at Az to satisfy the precondition 15 of the final action
tr, and action stack B C is included in the BG at 4, to satisfy literal 13 of a,.
Notice that these are the only actions in the PG which satisfy literals 13 and 15
respectively.

The algorithm proceeds now with the preconditions of the two actions in-
serted in the BG. Action stack A B requires literals 2 and 10. Literal 10 is only
achieved by action pickup A whereas literal 2 can be produced by several actions
in the PG in action level 43 or by action ag. The link pickup A ~ stack A B is
inserted to satisfy literal 10, and the resolution of Hteral 2 is postponed until
more information is available. Similarly, the action to satisfy the precondition
8 of stack B C is clearly identified whereas there are more than one choice for
literal 5 in the PG (several actions in action level A, or action ao).

The introduction of action pickup B to satisfy the precondition 8 of action
stack B C causes precondition 2 of action stack A B to become an inconsistent
literal, as the propagation of effects deletes this literal. Then it is necessary to
find an action between A4, and Aj to restore literal 2; since there is already an
action at Az in the BG which has literal 2 as an add effect {action stack B C),
this action is chosen to solve precondition 2 of stack A B.

Following the same process, action unstack C A is introduced to satisfy literal
9 of action pickup A. As literal 5 of stack B C is not removed by any action (the
propagation of delete effects from unstack C A does not cause any conflict because
the action stack B C is not reached), the algorithm selects ag to satisfy this literal.

Finally, literal 6 of pickupA is solved by means of action stack B C; the re-
maining preconditions of unstack C A and pickup B are all solved with aq. It is
important to notice that the algorithm always selects at first place actions al-
ready contained in the BG rather than introducing a new action in the BG from
the PG. The criteria the algorithm applies to select an action for a literal when
there are several choices are explained in [11] in more detail.

3.2 The Optimal Graph
This stage performs two different tasks taking the BG as input:

— To discover whether the problem is solvable.

- To verify that the plan comprised in the BG leads to an optimal solution
plan.

In order to accomplish these two tasks, the search method applies the fol-
lowing property.

Property 2 (partial consistency). A BG is partially consistent if it is possi-
ble to set a totol-order relation between each pair of actions in the same action
level of the BG.

146 E. Onaindia, L. Sebastia, and E. Marzal

45,6 16,9

2,10

7,944,576 1071269

a 2,3,6 58 /
-
1,23 \]

43.6 pickup B /]

69,152,410

8,2,73,-6 2,6,13,5,-8

Fig. 3. BG for the sussman anomaly problem

Definition 1 (mutual exclusion). Two actions a;, a; in the same level are
mutually exclusive between each other if a; deletes a precondition of a; and a;
in turn deletes a precondition of a;.

We will show that the application of property 2 guarantees the completeness
of the search method (it can find a graph if a solution exists for the given prob-
lem and returns “no graph” otherwise) and optimality of the obtained solution
(optimality refers to the total number of actions in the final plan). The task of
ensuring the total consistency of the graph is carried out by the POP at the
fourth stage.

Unsolvable problems. Let a; and a; be two mutually exclusive actions,
PTE(CLl) = {:E;,y}, Eff(a'i) = {zlaﬁy}a PYE(GQ) = {xzmy}! Eff(aﬂ) = {Zg, w'y}

If the only possible way to satisfy z; and z; is by means of actions a; and ag
respectively, then we say this is a precondition conflict. The name comes from
the fact that the literals involved in the conflict are the preconditions of actions
(in the example, a; needs literal y and deletes y and likewise for az). In this
case, the literal in conflict has to be achieved again by a new action (from the
PG) or an existing action (from the BG). The only additional checking is to
discover the correct ordering for the new producer action az (a1 — a3 ~ ay or
aq ¥ g —¥ CL]_).

Let’s assume the precondition conflict cannot be solved with any of the ac-
tions in the PG or BG, that is neither Property 1 nor 2 hold after the resolution
process. As there may be missing actions in the PG, the algorithm extends the
PC one additional level to search for new actions to solve the conflict. This
process is repeated until the PG cannot be further extended, that is, until no
new action instantiations can be applied. Notice the PG only adds positive ef-
fects whose producer actions have not been previously asserted in the graph and

Incremental Local Search for Planning Problems 147

therefore it is usually the case that only a few additional levels will be gener-
ated. Once the PG cannot be further expanded we can ensure all different action
instantations are already included in the PG. Thus when a precondition conflict
cannot be solved by any means the problem is unsolvable.

Theorem 1 (unsolvable problem). If a problem is unsolvable then one of the
Jollowing choices occurs:

1. any of the goal literals never appear in the PG or
2. the BG cannot be created or
3. there exists an irresoluble precondition conflict in the BG.

Proof. A problem is unsolvable if there does not exist a sequence of actions
which being applied to the initial situation gives rise to the goal state. Let O be
the set of operators of a problem, [= {p1,p2,... ,pn} the set of positive literals
which are generated by all the instantiations of each 0 € O and G the set of goal
literals.

(1) If such a sequence of actions does not exist then it might be the case that
dp;: € G and p; ¢ L, in whose case p; will never appear in the PG.

(2) If such a sequence of actions does not exist then it might be the case that
it is not possible to find an independent sequence of actions for each g ¢ @, in
whose case the BG will not be created because property 1 fails.

(3) I such a sequence of actions does not exist then it might be the case that
the BG does contain a sequence of actions for each ¢ € @ but it is not feasible to
combine all of them to form a global solution. In this case an irresoluble precon-
dition conflict will be found in the BG as property 2 will eventually fail. Notice
that establishing an ordering constraint between a pair of actions is equivalent to
apply a resolution method such as promotion or demotion, and the procedure to
solve mutually exclusive actions is equivalent to the process to restore a deleted
literal in a POP. Thus, all resolution methods to solve a conflict are considered.

The above theorem does not state that these three cases are the only sit-
uations under which a problem turns out to be unsolvable. However, from our
experience with this first prototype of the search method we can conclude that,
if one of the above choices holds, then the problem is unsolvable. Let’s explain
this in an informal way.

If the PG cannot be created is because a given goal gl never appears in
the PG, Then the problem is unsolvable because:

~ either there is no operator having g1 as an add effect in the domain definition,
in whose case the problem has no solution or

— there exists an operator whose instantiation would generate g1 but it is never
applicable during the PG creation. It is important to notice that the PG is a
relaxed, unrestricted graph where the delete effects of actions are not taken
into account. Consequently, if the conditions necessary for the operator to
be applicable do not hold in the PG they will not hold in a plan either.

148 E. Onaindia, L. Sebastia, and E. Marzal

The situations under which the BG cannot be created do not all neces-
sarily lead to an unsolvable problem. If the BG cannot be created it means that
at least one inconsistent literal is found, i.e. property 1 fails because it is not
possible to find a sequence of actions for achieving that literal. There are two
different explanations for this situation:

— If p only appears at Lo (initial literal level) (p ¢ Ly, /h € [1,k]) then there
is no applicable operator having p as an add effect, in whose case p cannot
be satisfied and property 1 fails. In this case it is easy to see the problem is
unsolvable, _

— On the other hand, if {p ¢ Ln /h € [1,k]) it might occur there exists an
applicable operator but this appears at a level 4; where [> k. Since our
algorithm only considers action levels equal or lower than the one of the
needer action, it would not find such an add effect to achieve the precondition
p. In this case, the algorithm would return the problem is unsolvable although
there might be a solution for it. This inconvenient can be easily tackled by
considering all action levels when creating the BG, that is when solving the
action preconditions.

The last case is when an irresoluble precondition conflict is found in the
BG. Property 2 attempts to find a consistent ordering for each pair of actions
ai,a; in the same level. If such an ordering exists (for example, a; < a;), then
it means that a; must be executed after a; - one time step further than a; at
earliest. Then a; is moved forward to the next action level and the same operation
is repeated again to search for new mutually exelusive actions. This is an indirect
way to verify that the sequences of actions that achieve each subgoal separately
can be properly combined. Therefore, when an irresoluble precondition conflict
is found it means there is a sequence of actions for achieving each subgoal but
not a correct ordering for the entire set of actions. Since all the actions in the
PG, BG and extended PG (if necessary} are taken into account when solving
a conflict, we can conclude that an irresoluble precondition conflict entails an
unsolvable problem. '

In summary, if one of the three conditions holds then the problem is usually
unsolvable. However, in some cases the algorithm could report that no solution
exists for a solvable problem. All this indicates the algorithm is able to discover
all unsolvable problems and might fail at finding the solution for some solvable
problems.

Theorem 1 states that, when dealing with an unsolvable problem, one of the -
three conditions will hold. So, if the BG is created for a problem which is known
to be unsolvable, then the lack of a solution will be discovered at the time of
solving precondition conflicts, In order to illustrate this, let’s take the following
example from the blocksworld domain. The initial situation is the same as for
the Sussman anomaly, that is, on C A, on A table and on B table. The goal state
consists of the two contradictory literals: on B C and on C B,

The PG for this unsolvable problem is the same as for the Sussman anomaly
problem until literal level Ly (Table 1). The two literals from the goal situation

Ineremental Local Search for Planning Problems 149

45,6 2,7

—pGasen D

7,9,74,75,~6 5.6,11,-2,~7 S R
1,23
4,5,6 \ _.pickup B .. m

8,-2,73,6 2,6,12,75,-8

Fig. 4. BG for the unsolvable problem

are found in Ly and the process for creating the PG terminates. The correspond-
ing BG is shown in Figure 4.

As it can be seen in Figure 4, there exists a sequence of actions for each
action precondition. However, we find a conflict between the two actions in A,
as they both require and delete literal 6 (arm — empty).

When solving the precondition conflict we find six potential actions in the

" PG in action level A, to solve literal 6. Actions stack C B and stack B C cannot

be used to restore literal 6 because they would both make property 1 fail (ac-
tion stack C B would delete literal 2 which is required by pickup B, and action
stack B C would delete literal 5 which is required by unstack C A). The other
four actions make property 2 fail as all of them require and delete literals 7 or 8

“which are also required by the actions in the BG (they are all mutually exclusive

with the two actions stack C B and stack B C in the BG in action level 42).

The PG is then extended one level further to find new actions to solve the
conflict (Table 2). Three of the actions in A3 have literal 6 as an add effect. Action
stack A B cannot be used because it requires and deletes literal 2 and therefore
it cennot be ordered between unstack C A and pickup B. The same happens with
action stack A C, which needs and deletes literal 5. The remaining choice is to
use action putdown A which requires literal 10. As this literal is only generated
by action pickup A, which in turn deletes literal 6, property 2 would fail because
the same conflict is found again in the graph. The PG can be extended one more
level (A4 and L4) and no actions for solving literal 6 are found at this level. We
can conclude that the precondition conflict is irresoluble and consequently the
problem has no solution.

Optimal solutions. During the process of creating the BG and verifying
whether the problem is solvable, the selection of an action to solve a literal
tends to obtain the minimal set of actions [11].

Property 3 (minimal graph). Let A be the set of actions in a graph G. G is
a minimal graph if for each precondition p of an action ap € A there exists only
one sequence of actions a; — a1 ... k-1 — Ok such thatp € PAddEff (ak-1)

150 E. Onaindia, L. Sebastia, and Ii. Marzal

This property is also extended as follows: when there are several actions to
solve a literal, the algorithm selects first an action whose preconditions are all
already solved with the nodes in the graph instead of selecting an action which
in turn needs additional actions to satify its preconditions. The application of
property 3 is a first step to obtain an optimal plan. However, some additional
checking must be done in order to guarantee the optimality.

Let ay and a; be two mutually exclusive actions, Pre(ay) = {z1,y}, Eff(a;) =
{z1,~y}, Pre(ag) = {z2,y}, Eff(az) = {z9,~y}. If there are other choices to
generate z1 or/and 22 then we say this is an effect conflict. This problem usually
arises due to a lack of information during the creation of the BG. The algorithm
will then replace the producer action of z1 (or 22) by another action in the BG or
PG which has this literal as an add effect. It is important to notice that the first
operation carried out by the search method is to verify the effect conflict rather
than the precondition conflict. This is because the resolution of a precondition
conflict always inserts a new action instead of replacing one of the two mutually
exclusive actions.

Proposition 1 (optimal graph). Let G be a basic graph and A be the set of
“actions tn G. If property 2 holds for the set A then G is an Optimal Graph (0G),
that 4s A is a subset of the actions of an optimal solution.

Proof. (1) The PG consists of the minimum number of levels as possible. (2)
The process of creating the BG always tends to select the minimal set of actions
(given two goals ¢y and gs, if action a; achieves g; and action ay achieves both
g1 and go then only ay is selected). (3) Actions existing in the BG are preferred
to actions in the PG to solve conflicts caused by mutually exclusive actions. All
this means that the algorithm is aimed at obtaining the optimal sequence of
actions for each subgoal. (4) If there are no mutually exclusive actions, then it
is feasible to succesfully combine the sequences of actions for each subgoal to
produce an optimal plan.

Two remarks must be commented about this process:

- An OG leads to an optimal solution plan provided that the POP is known
to be admissible.

- The third stage only verifies a partial consistency in the BG, which is
very helpful to discover whether the problem is unsolvable and to check the
optimality of the generated partial solution. However some other conflicts, as
negative threats, can still be present in the OG (because they are not detected
at the third stage). Thus the task of the POP will be to solve these conflicts and
ensure the total consistency of the final solution plan.

The application of property 2 does not only allow to discover unsolvable
problems but also to find and repair some conflicts in the BG. Figure 5 shows
the OG for the Sussman anomaly problem after applying property 2. In the BG
of Figure 3 we can see there are two mutually exclusive actions at A;: both
actions unstack C A and pickup B require and delete literal 6 (arm — empty). On
solving this conflict, the algorithm searches for actions in the PG at the next
action level Az, to restore literal 6. There are several choices:

Incremental Local Search for Planning Problems 151

1. action putdown B is mutually exclusive with action stack B C, which is al-
ready in the BG

2. stack C B would make literal 2 of action stack A B become inconsistent

3. stack C A is mutually exclusive with action pickup A, which is already in the
BG

4. stack B C cannot be used to restore literal 6 because it would delete literal
5 of unstack C A ‘ ‘ '

5. stack B A is mutually exclusive with stack BC

6. putdown C does not cause any conflict

The algorithm selects putdown C to solve the conflict and the result is the
QG shown in Figure 5.

456 169

19456
N

10,1,6,~9
6,9,15,~2,~10

1,23 ~ 7 56,11,7
’ 5.8

2/6,13,-5,8

Fig. 5. OG for the sussman anomaly problem

4 The Partial-Order Planner

Our partial-order planner [9] is based on the UCPOP planner [8] and therefore
completeness is guaranteed when starting from an empty initial plan. However,
when the input to the POP is not an empty plan, additional operations are
necessary to guarantee the completeness of the planner. In this section we show
how to achieve this task. On the other hand, the planner uses an admissible
heuristic search [4] which guarantees obtaining an optimal plan.

Tt must be pointed out that a POP cannot guarantee terminating on unsolv-
able problems although the complete search space is explored. Since this task
has already been performed by the third stage we can ensure that the POP is
only executed when it is confirmed a solution exists for the problem. The only
remaining task is then to guarantee the POP is able to find such a solution.

162 E. Onaindia, L. Sebastia, and E. Marzal

4.1 From a Graph to an Input Graph

This section presents the process to generate an input plan from the BG or OG.
This plan wiil be the initial plan for the Partial-Order Causal-Link (POCL)
plenner.

Let G(N,&) be a graph where N is the set of graph nodes so that A is a
subset of the set of actions that constitute a solution plan for the given problem,
and £ is the set of edges that represent causal links between the actions in A

Definition 2 (Input plan). 4n iﬁput plan is o tuple IT{A, X2, 0,8, I}, where:

— A =N is a set of actions that belong to the input plan.

~ X =& is a set of causal links between the actions in A.

~ @ is a set of ordering constraints between the actions in A, resulted from the
cousal links in X.

~ @ is a set of non-satisfled preconditions of the actions in A (agenda) which
in the case of an input plan is an empty set.

— I' is a set of conflicts between the actions in A.

There are two important features of our search method that must be en-
hanced: ‘

~ The input plan may not comprise all the actions of a solution plan because
either the PG does not contain all the actions of the problem or the process
of creating the BG has not included every action which might belong to the
solution. The POCL planner is then responsible for finding these missing
actions.

— In the process of creating the BG, when finding an action to solve the pre-
condition of another sction a;, only action levels A, where t € [0, 4] are
analyzed. This is because, according to the PG creation, it is more likely to
find the correct action in a lower action level than in an upper level. How-
ever, since action levels do not stand for execution steps it might be the case
that the correct action to solve a precondition of a; were in an action level
A¢ where t > j. This issue is partially overcome at the OG stage since at
this phase all action levels are taken into account.

These two features make the search method focus on a very restricted search
space at the expense of introducing non-correct causal links for some literals
{that is, the correct producer action to satisfy the literal is not the one denoted
in the causal link). _ :

When thé POP input is an empty plan, a complete search space is generated
and all choices to solve an open precondition or a conflict are considered in the
resolution process. However, when the input is not an empty plan, completeness
is not guaranteed because this non-empty plan is just the result of one branching

line of the search space which would have been generated by a complete search
method.

Incremental Local Search for Planning Problems 153

A way to recover completeness in the POP is by means of the White Knight
(WK) concept {2]. This technique simply provides a combination of promotion,
demotion, separation and precondition establishment methods.

Our WK technique [10] consists in deleting the threatened causal link and
insert the precondicion associated to the causal link into the agenda (which

it will be satisfied in turn by another existing or new action}. This technique . ..

can also be used when a threat cannot be solved by promotion or demotion.
Let a4,04,ar be three actions in the input plan such'that a; — a;, a; — ax,
p € AddEff(a;), p € Pre(a;), p € DelEff(a;)}, p € Pre(ax) and p € DeiEff(az). The
following process is used to restore the precondition p of a; or a; (symmetrical
threats):

1. select one of the symmetrical threats v(ay, a;, ;) and solve it by promotion
and/or demotion

2. select the other threat v{a;, a;, ar) and use the WK technigue

3. repeat this process inverting the order at which the threats have been selected

Proposition 2 (POP completeness). If the plan obtained from the BG or
O@ is input to the POP as the initial plan, then the POP will find e solution.

Proof. It is easy to check that all choices to restore the non-correct causal
link are considered in this process. If the correct action for a literal is an action
in the input plan, this will be discovered at step 2 of the above process when
selecting an existing action. If the correct action does not appear in the PG,
and consequently neither in the BG nor in the OG, this will be discovered at
step 2 when selecting a new action. Thus, completeness is recovered during the
planning process carried out by the POP by using a WK-based technique.

4.2 Main Features of the POP

It is important to distinguish between the two different types of pians that are
input to the POP. The WK technique is mainly used when a precondition p of
an action a; is deleted by one action a;, ¢ < j which belongs to another sequence
of actions. However, in other graphs it is possible to solve interactions among
actions by just finding a consistent ordering among them. This gives rise to two
different types of graphs and, consequently, to two different types of plans. Let
A be the set of actions in a graph and § the set of actions that constitute a
solution plan for a given problem: "

~ complete graphs, when A = 8. In this case, it is possible to set a total-order
relation among all the actions in .4 without restoring any literal.

— incomplete basic grophs, when A C S, In this case, the WK technigque must
be used to solve the conflicts and new actions will have to be added in the
input plan. e

154 E. Onaindia, L. Sebastia, and E. Marzal

It is important to remark the similarity of the process undertaken at the
third and fourth stage. In both cases the goal is to restore non-correct causal
links in the graph. Unlike the third stage, the POP uses a WK technique when
the appropriate actions to solve the conflicts are missing actions that do not
appear in-the PG, that is the reason why the third stage is not able to detect
such conflicts.

The goal of the POP is to find a final plan, which involves two main tasks:
detecting and solving conflicts among the actions in the OG and adding the
necessary actions to complete the plan. These missing actions belong to any of
the following three types:

— actions which do not appear in the PG or

- actions which appear in the PG but they are not discovered during the
creation of the BG or

~ actions which do appear in the PG and more than one executzon of the same
action is required (repeated actions).

5 Experimental Results

The experiments shown in table 3% correspond to a previous prototype of our
method where the third stage is not implemented. Therefore, the algorithm is not
obtaining the optimal solution for problems such as monkey test 1, nor detecting
unsolvable problems.

Problems were taken from the UCPOP suite and Blackbox software distri-
bution. All tests were run on a Sun Ultra 10 machine and results are given in
seconds. We solved each problem ten times with Blackbox v3.6 [6] - using the
Graphplan search engine-, STAN [3] and our search method. The results are
classified into two groups, those for complete graphs and those for incomplete
graphs {Table 3).

In most of the problems where the search method was able to obtain a com-
plete graph, the CPU time was reduced by more than 50% compared to STAN
and Blackbox. For example, in the blocksworld domain, as the number of blocks
increased, this difference was greater. This is specially noteworthy in Towerlarge
problems: our method solved the TowerLargeD problem that neither STAN nor
Blackbox were able to solve.

For those problems with an incomplete graph, the search method behaves
slightly worse that STAN and Blackbox, although this difference was not as
significant as in the previous case. As the average and standard deviation results
show (Table 4), our method behaviour was much more stable.

6 Related Work

Recently, local search techniques have been applied to planning problems. In
particular, Kautz and Selman developed a local-search based method (Walksat)

® OT stands for the time used in the graph creation and TT for the total time. We
have used a blocksworld domain with 3 operators.

Incremental Local Search for Planning Problems 155

Table 3. Performance of Blackbox, STAN and our method on different problems

[Problem [Blackbox]STAN [Our method |
Complete [TT T GT TT
graphs

Sussman 0.02 0.028 0.005 [0.006
Tw.reverd 6.03 0.03 0011 10.021
Tw.revers |0.06 0.03 0.023 10.04
Tower4 0.07 0.032 0.013 0.013
Towers .21 0.07 0.024 0.025
Tower6 0.6 0.16 0.046 |0.047
Towerd 111 10.53 (.225 10,225
T largeA 0.82 (.53 0.079 0.08
T largeB 4.34 2.63 0.289 0.3
T JargeC —_— 82143 11.792 |1.8

T argeD — — 4.508 [4.52
Incomplete [TT T GT {IT
Graphs

Hanoi3d 0,11 0.039 ¢.019 |0.176
Hanoi4d 1.41 0.061 0.035 |1.81
Ferry 0.04 0.012 0.005 {0.073
Monkeyt? 0.11 0.022 0.009 {0.08
Monkeyt2 0.26 0.037 0.014 10.212

Table 4. Average and Standard Deviation of our method, STAN and Blackbox of
solved problems

Our STAN [Blackbox
method
Average 0.454 6.025 17.034

Standard Deviation [1.017 20,469 |26.812

for solving planning problems as satisflability problems [7]. Gerevini and Se-
rina propose a new method for local search [5] in the context of the "planning
through planning graph analysis” approach introduced by Blum and Furst {1].
In this latter work, the general search scheme is based on an iterative improve-
ment process, which, starting from an initial subgraph of the planning graph,
greedily improves the "quality” of the current plan according to some evaluation
functions. '

Our approach keeps some similarity with this latter work in the sense that
- it also uses an initial subgraph of the planning graph which is iteratively refined
in three consecutive stages. The mechanisms used for the plan improvement
are a combination of formal properties on graphs and heuristics to evaluate the
best choice to restore unsolved preconditions. In this way, our approach exploits

156 E. Onaindia, L. Sebastia, and E. Marzal

the advantages of a local search while keeping the theoretical completeness of
systematic search technigues.

Local search techniques are incomplete in the sense that they cannot detect
that a search problem has no solution [5]. However, one remarkable aspect of
our approach is that it is able to detect unsolvable problems, while efficiently
solving hard search problems.

7 Conclusions

In this paper we have presented a search method consisting in a four-process
execution. Kach process obtains a partial solution which is incrementally refined
by the subsequent processes. The first stage simply obtains a graph from the
problem which may comprise all the actions of a final solution. The basic graph
selects the actions which form a part of a correct solution. The aim of the third
stage is to guarantee completeness and optimality of the generated solution. And
the POP is in charge of obtaining the final solution by finding a correct ordering
among all the actions in the plan.

Our objective was to develop a new planning approach by taking advantage
of the partial-order planning properties and reducing the inefficiency caused
by the large search spaces generated by these planners. We have also shown
that our method average outperforms other planning approaches as Graphplan
or SATPLAN planners. This is a first prototype of the search method. The
obtained results confirm that the POP is still a bottleneck mainly for those
problems which give rise to an incomplete graph. For this reason we suggest
that the introduction of the third stage will significantly reduce the amount of
work done by the fourth stage.

Acknowledgments. This work has been partially funded by the Spanish Gov-
ernment CICYT-FEDER project 1FD7-0887.

References

1. Blum A. L., Furst M.L.: Fast Planning Through Planning Graph Analysis. Artifi-
cial Intelligence 90:281-300 (1997).

2. Chapman D.: Planning for Conjuntive Goals. Artificial Intelligence 32(3):333-377
(1987).

3. Fox M., Long D.: STAN public source code.
http://wew. dur.ac.uk/CompSci/research/stanstuff/ (1999)

4. Gerevini A., Schubert L.: Accelerating Partial-Order Planners: Some Techniques
for Effective Search Control and-Pruning: Journal of Artificial Intelligence Research
5:95-137 (1996}

5. Gerevini A., Serina I.: Fast Planning through Greedy Action Graphs. In Proceed-
ings of the 16th National Conference on Artificial Intelligence (AAAI-99), 503-510
(1999

6. Kautzz? H., Selman B.: Blackbox Planner 3.6.

http://waw. research.att.com/ kautz/blackbox/ (1999)

1L

Incremental Local Search for Planning Problems 157

. Kautz H., Selman B.: The role of domain-specific knowledge in’ the planning as

satisfiability framework. In Proceedings of the 4th International Conference on Al
Planning Systems (AIPS-88), 181-189 (1998)

. Penberthy J.8., Weld, D.S.: UCPOP: A Sound, Complete, Partial Order Planner

for ADL. In Proceedings of the 1992 International Conference on Principles of
Knowledge Representation and Reasoning, 103-114 (1992). Morgan Kaufmann,
Los Altos, CA

.. Sebastia L., Onaindia E.,.Marzal E.: Improving .expressivity and efficiency in

Partia}-Order Causal Link Planners. In Proceedings of the 18th Workshop of
the UK Planning and Scheduling Special Interest Group (PLANSIG-99), 124-136
(1999}

. Sebastia L., Onaindia E., Marzal E.: A Graph-Based Approach for POCL Planning.

In Proceedings of the 14th European Conference on Artificial Intelligence (ECAIL-
00), 531-535 (2000)

Onaindia E., Sebastia L., Marzal E.: 45P: A four-stage planning process. In Pro-
ceedings of the BCAI-00 Workshop on New Results on Planning and Scheduling
(PuK 2000), 115-129 {2000) -

