Reprinted from

DATA &
KNOWLEDGE
ENGINEERING

Data & Knowledge Engineering 15 (1995) 189-211

A temporal blackboard for a multi-agent environment'

V. Botti***, F. Barber®, A. Crespo”, E. Onaindia®, A. Garcia-Fornes®, 1. Ripoll®,
D. Gallardo®, L. Hernandez”

*Dpto. de Sistemas Informdticos y Computacidn, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
prto. de Ingenieria de Sistemas, Computadores y Automdtica, Universidad Politécnica de Valencia,
E-46022 Valencia, Spain

Received 28 January 1994; revised manuscript received 9 January 1995; accepted 21 February 1995

L
i

ELSEVIER

DATA & KNOWLEDGE ENGINEERING

Editor-in-chiet
PETER P, cHEN, Doparment of Computer Science, Louisiana State University, Baton Fouge, LA 70803, USA, tel. (1) (604} 388-2482, emait:
chen@bit.eselsu.edu :

Editor for Europe

REIND VAN OE RIETY. [epartment of Mathematics and Computer Science, Free Univarsity, De Boglelaan 1081, 1081 HVY Amsterdarm, The Netherlands, tel.:
(31) {20} 444-7757, email; vdriet@cs.vu.nt

Editoriat board

PETER M.G, APERS. University of Twente, FO. Box 217, 7500 AE Enschede, The Netherlands, email: apers@cs.utwente.nl

ELISA BERTING, Universita df Genova, Dip. di Matematica, Via L.B. Alberli 4, 16132 Genova, Haly

JANIS BUSENKO, JR., Dapt. of Computer and Systems Science, Royal instilute of Technology, Electrum 230, 516440, Kista, Sweden, emall: janis@sisu.se

THOMAS CHEATHAM, Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA, email: cheatharn@harvard.harvard.edu

WESLEY CHu, Dept. of Computer Science, University of California, Los Angeles, CA 0024, USA, email: wwodics.ucla.edu

AG. COHN, University of Leeds, Schoot of Computer Studies, Div. of Artificial Intelligence, Leeds LS2 9JT, UK, email: agc@scs.leeds.ac.uk

SAYYED M, DEEN, Data and Knowledge Enginaaring Centre, University of Keele, Keele, Staffordshire 3T5 5BG, UK, email: deen@cs.kl.ac.uk

AEINER DURCHHOLZ, Gasallschalt fiir Mathematik und Datenverarbeilung, Postfach 1316, D-53731 St.-Augustin, Germany, email: durchholzgbgmd.de

GEORGES GARDARIN, fnstitut de Pragrammation, Université de Paris VI, 4 Place Jussieu, 75230 Paris Cedex U8, France, email: gardarin@masi.ibp. ir

MATTHIAS JaRke, AWTH-Aachen, informatik V, Ahornstr, 55, 5100 Aachen, Germany. Email: jarke@intormatik.rwth_aachen.de

ARAVIND J0SHI, Department of Computer and inforrmation Science, University of Pennsylvania, 206 South 33rd Street, Philadelphia, PA 19104, USA,
ernail: joshi@fine.cis.upsnn.edu

SANE LU, Dept. of Computer Science, University of Niinois at Urbana-Champaign, 1304 Spring Ave., Urbana, 1L 61801-2987, USA, amail:
Janeliu@es.uiuc.edu

PETER C. LOCKEMANN, Uiniv, Karlsruhe, Fakultdt Rir informatik, Postfach 6980, D-76128 Karlstuhe, Germany, email: lockeman@informatik.uni_karlsrihe.de

B LOPEZ DE MANTARAS. Inst, invest. intelligencia Antificial, CSIC, Cami de Sania Barbara, 17300 Blanes-Girona, Spain, email: mantaras@ceab.es

ROBERT A, MEERSMAN, Free University of Brussels, Compuler Science Dept., Building F-G/10, DINF, Pleinlaar: 2, 8-1050 Brusseis, Belgium

SHAM NAVATHE, College of Computing, Georgia Institute of Technology, Alanta, GA 30332-0280, USA, email: sham@ce.galech.edu

£.J. NEUHOLD, Gaselischaft fir Mathematik und Dateriverarbeitung, iPSl, Postfach 104326, D-6100 Darmstadt, Germany

PETER NG, Departmant of Computer and Information Science, New Jersey Institute of Technology, University Heighls, Newark, NJ 07102, USA, email:
ng_p@vienna.njit.edu

SHOSKO MSHIO, Knowlsdge Systems Engineering Lab., Dept. of Information Systems Engineering, Faculty of Enginesring, Osaka University, 2-1
Yarnadaoka, Suita, Osaka 565, Japar, email: nishio@ise.eng.csaka-u.acjp

JAN PAREDAENS, Uiniversitaire Instelling Antwerpen, Dept. Wiskunde en Informatica, Universiteitspiein 1, B-2610 Antwerpen-Wilrijk, Belgiurn, email:
pareda@wins.uia.acbe

COLETTE ROLLAND, Liniversité de Paris 1, 17 Rue de la Sorbonng, 75231 Paris Cedex 5, France, email: relland@mesi.ibp.fr

. SANDEWALL. University of Linkaping, Dept. of Computer Sclance, 58183 Linkaping, Sweden, email: sandewall@ida.iu.se

GUNTER SCHLAGETER, FemnUniversitdt Gesamithochschule, Postfach 940, D-58009 Hagen, Germany, email: gurter.schlageter@fernuni_hagen.de

WL SCHMIDT, University of Hamburg, Computer Science Department, Databases and Information Systems, Vogt-Kdlin-Str. 30, D-22527 Hamburg,
Germany, email: |_schmidi@dbis1.informalik.uni-hamburg.de

FABIH A. SCHREBER, Dip. di Elettronica, Politacnico di Mitano, Piazza Leonardo Da Vincl 32, 20133 Milano, ltaly, email: schreibe@ipmel2.efel polimi.it

A, SPWBERG, Norges Tekniske Hogskole, Institutt for Datateknikk og Telematikk, O.S. Bragstds pl. 2E, N-7034 Trondheim, Norway

PETER M. STOCKER, University of East Anglia, School of Information Systems, Norwich NR4 7TJ, Norfoik, UK, email: p.stocker@uea.ac.uk

F. STUDER, Universitidt Karisruhe, Instit. Angew., Informatik & Formale Beschreibungsverfatiren, Postiach 6980, 76128 Karlsruhe, Germary, amail:
studer@alfb.uri-karisrube.da

1.6, TinG. Universily of Connectiout, School of Engineering, 191 Auditorium Foad, U-237R, UTEB 484, Storrs, CT 06269-3237, USA, emaif: .
ting@eng2.uconn.edu

Jan TREUR, Dept. of Mathematics & Computer Science, Free Universily, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, amail:
traur@cs.vu.nl

Th. WETTER, IBM Scipntific Canter, Vangerowstrasse 18, F.O. Box 103068, 69115 Heidelberg, Germany, email: wetter@dhdibm1.bilnet

OMVID YUN, Lab. of intelligent & Paraliel Systems (LIPS), University of Hawaii at Manoa, 492 & 493 Molmes Hall, 2540 Dole Streel, Honoluly, HI 86622,
USA, email: dyundwilikieng. hawail.edu

LOTF 2ADEH, Computer Science Division, Dept. of EECS, University of California, Berkeley, CA 94720, emall: zadeh@cs.berkeley.edu

Alms & scope

Darg & Knowiedge Engineering (DKE} serves designers, managers, and users of database systems, expert systems, and knowledge-based systems. The major aim of

the jeurnal is o identity, invastigate, and analyze the underlying principles in the design and effective use of these systems,

The DKE journa! will be devated to cross-fertiization of ideas and o stimulating interactions between workers in the database, knowledge engineering, and expert system

areas. To achieve this aim, the journal will collect and disseminate original research resuits, technical advances, and news Hems on data engineering, Xnowledge

engineering, or the intersection of these two Falds.

The DKE journal weicomes original research papers in the areas of design, implementation, and applications of data/knowledge-based systems. The jeurnal wil

emphasize the loflowing topics:

1. Representation ard maniputation of data or knowledge: Conteplual data models, knowledge representation techriques, Data/knowledge manipulation languages
and techniques.

2. Archi{ecrure of database, axpert, or knowledge-based systems: New afchitectures for database/Rnowledge base/expert systems, design ard implementation
technigues, fanguages and user interfaces, distributed architectures.

3. Construction of datasknowledge bases: Datasknowledge base dssign methodologies and tools, data/knowledge acguisition methods, mntegrity/ security/mainte-
nance issues.

4. Applications, case studies, and management issugs. Data adminisiration issues, knowledge engineering practice, office and engineering applications.

@ The paper used in this publication meets the requirements of ANSI/NISO 239.48-1992 (Permanence of Pager).

Published 9 times a vear (169-023X/95/$09.50 Printed in The Netherlands

sriands, tel.;

IHSE@SIsU. 5S¢

gmd.de
siibpfr

|, USA,

karlstuhe.de
b.es

SA, email:
21

mail:

de
wrg,

poiimi.it

‘mail:

1, Hi 96822,

& major aim of

axpert system
ng, knowledge

he journal will
tions languages
mplementation
sourity/mainte-

ms.,

Netherlands

DATA &
KNOWLEDGE
ENGINEERING

Data & Knowledge Engineering 15 (1993) 189-211

A temporal blackboard for a multi-agent environment

V. Botti®*, F. Barber®, A. Crespo®, E. Onaindia®, A. Garcia-Fornes®, I. Ripoll®,
D. Gallardo®, L. Hernandez®

*Dpto. de Sistemas Informdticos y Computacion, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
®Dpto. de Ingenieria de Sisternas, Computadores y Automdiica, Universidad Politécnica de Valencia,
E-46022 Valencia, Spain

Received 28 January 1994; revised manuscript received 9 January 1993; accepted 21 February 1595

Abstract

The multi-agent system paradigm emerges as an interesting approach in the Knowledge Based System (KBS)
field, when distributed problem-solving techniques are required for solving problems that can be represented as a
collection of groups of cooperating intelligent individuals. A key concept in the multi-agent systems is the
interaction between agents. On the other hand time plays a crucial role in a wide range of KBS applications.
Temporal reasoning and representations consists of formalizing the notion of time and providing means to
represent and reason about the temporal aspects of knowledge. This paper presents a framework for agent
communication based on the blackboard paradigm which is able to manage temporal information, and it provides
its multiple access and coherence management protocols.

Keywords: Blackboard; Knowledge-Based Systems; Real-time; Multi-agent; Temporal reasoning; Temporal
Representation

1. Introdaction

The multi-agent system paradigm emerges as an interesting approach in the Knowledge
Based System (KBS) field, when distributed problem-solving techniques are required for
solving problems that can be represented as a collection of groups of cooperating intelligent
individuals. On the other hand, temporal representation and reasoning problems arise in a
wide range of KBS application areas, where time plays a crucial role, such as in process
control and monitoring, fault detection, diagnosis and causal explanation, resource manage-

;“Corresponding author. Email: vbotti@dsic.upv.es
This work has been funded by the ESPRIT-II Project of the European Community No. 5146 and 7805 (REAKT),

by grant No. TAP-0511-C02 of the Spanish Government and by grant No. GV-1112/93 of the Generalitat
Valenciana (Spain).

0169-023X/95/$05.50 © 1995 Elsevier Science BV. All rights reserved
SS§DI: 0169-023X(95)00007-0

190 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211

ment and planning, etc. In these cases, temporal data representation and coherence
management are needed in order to obtain conclusions about the problem.

A multi-agent world can be defined as a system in which several agents interact [9]. An
agent is considered as a physical or abstract entity which is able to act on itself and on its
environment in order to rmanipulate a partial representation of its environment and to
communicate with other agents. The agent’s behavior is a consequence of its perception, of its
knowledge and of its interactions with other agents.

Two main directions have emerged in the research field related to the study of multi-agent
worlds [8]:

® Multi-expert system paradigm or Distributed Artificial Intelligence (DAI): Agents, repre-
sented by a knowledge base or a specialized procedure, can be considered as specialized
modules interacting together according to a specific architecture.

® Robot acting in a multi-robot environment paradigm: Agents can be considered as
autonomous entities which have perception and communication capabilities, as well as
decision abilities. They can act on their environment in an autonomous way.

A key concept in the multi-agent paradigm is the interaction between agents. This
interaction cannot only be considered by single message exchange. Usually, communication
occurs through sophisticated protocols for informing, requesting or convincing [7]. There are
different levels of interaction between agents [7]:

® strong interaction between decision capabilities,
¢ medium interaction between reasoning capabilities, and
® weak interactions between perceiving capabilities.

This paper deals with the last kind of interaction between agents. The weakest interaction
which can be found among several agents is to use the external world to exchange
information. In fact, behavior can be described as deriving directly or not, from the
knowledge an agent has about its environment. Sending information to an agent (communica-
tion case) or modifying the environment (world used as a blackboard) are two means by which
cooperative behavior can be achieved among loosely coupled autonomous entities [21].

From the previous considerations, the need for computational models for providing a
framework to communicate agents is inferred. In this sense, we can find two paradigms [7]:

® the actor paradigm, which is based on an object-oriented language where each agent has an
independent life and communicates with others by sending messages,

® the blackboard paradigm, in which agents communicate by writing on a shared structure
called a blackboard [4,5,10].

‘The work presented here is based on the second paradigm, and it provides a framework for
sharing coherent information between agents. The blackboard is structured for organizing
communications at various levels of abstraction, and an agent communicates with another one

i coherence

ract [9]. An
If and on its
jent and to
sption, of its

" multi-agent

rents, repre-
s specialized

ynsidered as
, as well as

agents. This
nmunication
. There are

it interaction
to exchange
4, from the
(communica-
ans by which
es [21].

providing a
iradigms [7]:

agent has an
-ed structure
amework for

T organizing
another one

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189--211 191

by writing on the blackboard. Those agents are activated (by the control component) when
given patterns of information are present on the blackboard.

In this paper, a Temporal Blackboard framework for a multi-agent world, including
concurrence control protocol, is described. The blackboard is a component in a real time
expert system shell developed in the framework of the REAKT Esprit project [16].

2. Temporal information

Temporal information (Fig. 1) in dynamic systems is relevant in order to know the
evolution of the system behavior and the time-stamped deduced values and to be able to
reason with them (temporal constraints or dates for each data, trends, threshold crossing
dates, average values in an interval, etc.) [1,15]. With a reified approach, problem temporal
data are projected on a time line. It is assumed that a temporal value holds in a temporal
interval defined by its extreme time points (I”, I7) [12]. From a temporal point of view, a
temporal value can be:

© exactly known: the time at which the value has been taken and its duration are known (the
ALARM was ON from 10:20:03 till 10:28:45).

® partially known: the value is the result of a sampling and the end time of the value i8
undefined (the TEMPERATURE at 10:23:22 was 120 degrees)

® known with imprecision: a variable value starts or finishes at some point within an interval
(the KILN-STATUS will be HIGH before 20 minutes).

- ™\
PAST VALUE
i
10:26:03 10:28:45 now Time
CURRENT VALUE

- T=120°

= 2 Time

2322

4 FURUREVALUE
- L
W 00 TFime

_ MM Temporal window of an acurrence

[Begin time of a fact
1 Endumeorata

Fig. 1. Temporal information.

192 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211

® dependent: the starting or ending time of a temporal value depends on other temporal facts
(the ALARM will turn ON 5 minutes after the KILN-STATUS is HIGH)

Additionally, it is necessary to make predictions about process variables and reason with
them to be able to take actions in advance to avoid future problems (predictive control).
Consequently, the need for temporal information management requires handling the following
kinds of information:

® Past values will usually be ‘exactly known’ values related to the instant at which they were
produced, so, a date can be used to store them.

¢ Current values are the values that hold at the present time and can be assumed as ‘partially
known’ and ‘dependent’ values. They were asserted at known instants (i.e.: sampling period,
its begin time depends on the begin time of other values), and, as no more information has
been added, the same value could be maintained. A persistence attribute can be defined for
this type of value. If the persistence time is exceeded, a lack of information is produced and
no value is assumed. If there is no defined persistence, the last value is always maintained
until the next incoming value.

® Future values are used to represent expected or predicted values. Their management
presents more difficulties due to the lack of knowledge about the exact instant they will be
produced. Thus, as a temporally imprecise value, it can be predicted that a KILN-STATUS
will be HIGH at some instant before 20 minutes, but the concrete instant it will start or
finish, or its duration is not known. In advanced-future reasoning, predictions can deduce
other predictions. Thus, as a result of a causal prediction, temporally dependent values can
also be predicted for instance, ‘The ALARM will turn ON 5 minutes after the KILN-
STATUS is HIGH’. This temporal dependency must be represented in order to reason
about the future. When the causal prediction that originates the dependent predictions is
fulfilled, these dependent facts becomes temporally imprecise facts. Thus, when reasoning in
advance on present and future facts, rules can be fired with current or future facts, and
actions on the right-hand side of a rule have to be executed at the instant (present or future)
the values are deduced.

3. System architecture

In this section, the system architecture will be described. The system is built around a
Temporal Blackboard for a Real-Time Knowledge Based Architecture, named Knowledge
Data Manager (KDM). The KDM is integrated in the REAKT toolkit [16] a high-level
environment for the development and production of Real-Time Knowledge Based Systems.
The architecture of this temporal blackboard provides storage and management of application
objects used by a set of knowledge sources (KS) running concurrently (Fig. 2).

The main components in the architecture are:

e [CM: The Intelligent Communication Manager is a task that provides the interface with

nporal facts

reason with
ve control}.
he following

h they were

as ‘partially
sling period,
rmation has
s defined for
roduced and
: maintained

nanagement
they will be
N-STATUS
will start or
can deduce
it values can
* the KILN-
ar to reason
wedictions is
reasoning in
¢ facts, and
:nt or future)

ilt around a
1 Knowledge
a high-level
sed Systems.
»f application

aterface with

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211 193

saus T

cM |
Writer
_—

Expert Process

RTOS Extensions)

Fig. 2. REAKT global architecture.

external processes for sending and receiving data. ICM performs an intelligent filtering and
stores values in the KDM.

e KDM: The Knowledge/Data Manager implements a Blackboard (shared memory) for

temporal data. Temporal data are managed by means of a Time Map Manager (TMM)
module that is in charge of maintaining temporal relations between temporal information.
These temporal constraints are kept in a temporal graph: Time-Map (TM). The Reason
Maintenance System (RMS) module is in charge of maintaining the logical coherence of
temporal data. It deletes the deduced value when some premise is deleted or not fulfilled,
and it modifies the temporal status (past, current, predicted) of deduced values according to
the temporal status of premises [3].

® Agents are executable instances of Knowledge Sources (KS) which are the static compila-

tion entities holding the domain knowledge. A KS in the REAKT architecture can be
procedural or rule-based. In order to apply this approach to real time systems, each agent is
structured as an independent task (integrated by the KS, the inference engine and the local
memory or context, in the case of rule-based KS). Each agent is able to cooperate in a
concrete reasoning process to obtain a global solution. Sequential execution of agents

-provides the global answer to a goal. The system can be seen as a collection of agents

(reasoning modules) which share a common database (blackboard) and communicate with
each other by signaling events.

® Control: this module receives significant events in the system and, in consequence, creates

agents or sequences of cooperating agents (intentions) for solving a situation [13,14]. Several
agents can run concurrently as a consequence of external or internal asynchronous event
Occurrences.

® Real-Time Operating System (RTOS) Extensions: this module provides system calls to

create internal processes and to communicate and to synchronize them. Internal processes
can be scheduled using user defined policies [6].

194 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211

e Timer: It provides timing signals and message manipulation to execute actions at determined
instants with respect to a real time clock.

All these components are organized as a process in order to concentrate all intelligent
activities and to apply more complex scheduling policies to guarantee the best quality answer
in the specified response time. This process is called Expert Server task and is implemented as
a separate process on top of a UNIX operating system with real time extensions [2}.

4. Blackboard structure

In this section, we will describe the Temporal Global Memory of a Real-Time Knowledge
Based Architecture, named Knowledge Data Manager (KDM). The architecture of this
temporal blackboard provides storage and management of application objects used by a set of
agents reasoning concurrently.

The KIDM data structure has an object-oriented approach (Fig. 3). Each object in the
blackboard has a set of static and temporal slots. The structure of a temporatl slot is formed by
three set of pointers [past, current, future] to Temporal-slot-value structures.

The Temporal-Slot-Value class is defined by means of a value and its begin and end points
are defined as the dates between where the value was, is, or will be taken. When the
occurrence time of a temporal value is not precisely known, these fields contain a tmnode
{objects that implement time points managed by the TMM); otherwise these slots will keep a
real number as they stand for dates or absolute times. Each tmnode represents a time point
and it has a set of temporal constraints with other ones.

There is a one-to-one mapping between temporal values and RMS nodes, the latter being
used to compute the status of the associated temporal value. The value of the dependencies
slot wiil be an instance of the rms-node class. This class is composed of two basic attributes:
the depends-on slot will contain all the support-pointers that denote different derivations of
the temporal value associated with this rms-node. Each support is basically constituted by a set
of rms-nodes denoting that the belief of this rms-node depends on the belief of each rms-node
in the support. The support-to slot of a rms-node will contain all the pointers to those
rms-nodes whose belief is subject to the belief of such rms-node.

In the KDM architecture (Fig. 4), the Time Map Manager (TMM) module is in charge of
maintaining temporal relations between temporal information: creation, deletion, and tempo-
ral relation management between temporal values. The Reason Maintenance System (RMS)
module is in charge of handling the logical dependencies between temporal values, deleting
each consequent of a temporal value when this one is deleted, it is also in charge of modifying
the temporal status (past, current, predicted) of deduced values according to the temporal
status of premises (this change in the temporal status of deduced values can also be caused by
the incoming of new data or by the deletion of an outdated prediction in the TMM). Both
TMM and RMS components allow for managing logical dependencies and the coherence of
temporal values.

TMM only keeps future values, considering an end point of a current value as future data

w
de

: lo
b

t determined

Il intelligent
tality answer
demented as

s [2].

: Knowledge
ture of this
d by a set of

bject in the
is formed by

d end points
1. When the
in a tmnode
s will keep a
a time point

latter being
lepenndencies
ic attributes:
erivations of
uted by a set
ch rms-node
ers to those

in charge of
, and tempo-
stem {RMS)
ues, deleting
of modifying
‘he temporal
be caused by
(MM). Both
:oherence of

;5 future data

V. Botti et al. | Data & Knowledge Engineering 15 {1995) 189-211 193

TEMPORAL SLOT
R ”&W&ﬁ.

urrent value
IR

""W«W&?
N
5
\
%
»
History buffer fﬂ*;ﬂ’;’m Future values
- 5=
= .

1Time

SUPPSRT-TO
7
‘

.................

TEMPORAL-SLOT-VALUE
{ YALUE }

BESOCIATED-FACT

((TEMFORAL-SLOT)
(TENFORALELOT) Coommamens™™)
(C_pepEnDENGIES)
— T Cozmennsan)

Fig. 3. KDM internal data structure.

until the current value becomes a past value. Hence, a time point with a precise time can be
deleted from the TMM after propagating its consequences.

Initial data for each agent creates its initial local-kdm, by a reference-link from global-kdm.
A local-kdm is a set of local dates which are independent from other local-kdm’s. The
local-kdm structure is the same as for a global-kdm and all KDM operations have the same
behavior when they are to be applied on a different temporal data structure. Each agent works

196 V. Bouti ¢t al. | Data & Knowledge Engineering 15 (1993} 189-211

GLOBAL-KDM
i GLOBAL MEMORY i
MY

T~

LOCAL-KDM.1 LOCAT-KDM.n
LOCALMEMORY | | e | [TOCAL MEMORY]
e YL [#FA5 [AErrem)

h

: :
TEEARAE I I Rkt it Agent.n

Fig. 4. Temporal blackboard.

on its local-kdm, where it writes its intermediate data. At the end of the agent execution,
global data in the local-kdm are committed to the global-kdm. Thus, this global-kdm stores
the shared data for all agents.

4.1. Blackboard interface

Blackboard interface provides a set of functions that can be used by a user language to
express actions, such as class definition, object instances, and temporal updates and queries.
Some of these functions (query functions) can be used as rule predicates in the left hand side
(LHS) of rules (queries in procedural agents), and others can be called from the right hand
side (RHS) of rules (actions in procedural agents) updating the internal information.

With respect to the Left-Hand Side temporal functions provided by the blackboard, they can
be stated as:

® when (object slot value begin end): This predicate is satisfied for those temporal values
(current or predicted) which, belonging to the temporal slot, match the value. The begin
and end of the temporal value may be instanced in variables. They can be either a date
value or a time point.

® past-value (object slot value begin end): This predicate is satisfied when a current value in the
defined slot is outdated and is moved from current to past.

¢ temporal-test (any temporal expression): this function is used for asking about temporal
relations between: i) dates, beginnings or endings of temporal values or ii) dates or time
points obtained from the begin or end of a temporal value and the current time (NOW).The
temporal-test management is achieved by using the TMM internal functions to inform at the
moment that the temporal-test becomes true, by changing their temporal windows.

Temporal intersection is a concept related to the validity for rule application. When a future
value created in the KDM depends on other predictions, it is necessary to primarily ensure the -
simultaneous completion of these temporal dependencies in order to infer the prediction in the
conclusion. The temporal window defined by the temporal-intersection between the values
matching the LHS premises is called ‘LHS-TIME’ and it is bounded by two time-points:

t

Vi

St

o TR U T o R e Sl

at execution,
il-kdm stores

- language to
and queries.
left hand side
ae right hand
ation.

vard, they can

aporal values
. The begin
either a date

it value in the

out temporal
dates or time
» (NOW). The
inform at the
wdows.

Nhen a future
ily ensure the
adiction in the
en the values
> time-points:

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211 197

[begin-lhs-time (Ihs-BT), end-lhs-time (lhs-ET)]. These time-points are managed by the TMM
module.

Blackboard functions on the Right-Hand Side of the rule modify the internal state by adding
values and predictions about slot values of nodes:

e predict-value (object slot value begin end dependencies): Adds a predicted value to a
temporal slot. The user specifies the begin (ths-BT by default) and end date for the value,
by writing temporal restrictions expressing ‘before’, ‘after’ or ‘at’ a time point, and the
dependencies of the predicted values (called premises in what follows), which, in the case of
rule-based agents, are, by default, the values matching the lhs of the rule.

The status of the created value is always predicted. It may change according to the following
specification:

—to current: a predicted value created with this function is changed to current when the
prediction is fulfilled. This can only occur when a new value (that matches the prediction)
arrives by means of a put-value (see function definition below).

— deleted: a predicted value is deleted in two cases: 1) when the upper time f its begin temporal
window arrives and the prediction has not been fulfilled and ii) when one (or more) of the
predicted values in dependencies is deleted.

The following meaning for the predicted values is assumed: a prediction is matched by a
new (predicted) temporal value when it has the same value and the begin and the end of the
new temporal value are respectively within the temporal windows of the begin and end points
of the prediction. Then no new prediction is created and the temporal window of the existing
matched prediction will be constrained in accordance with the new prediction and will also
update its prediction dependencies. In this case, pending queries can be updated. A prediction
is fulfilled by a new (current) temporal value when it has the same value and the begin and the
end of the new temporal value (current) are respectively within the temporal windows of the
begin and end of the prediction. If there is some prediction about the slot which is fulfilied by
the put-value (current value), then a new current temporal value is not created. Then the
status of the fulfilled prediction value is changed to current.

® put-value (object slot value begin end dependencies): This function sets a value to a slot. The
user specifies the begin (lhs-BT by default) and end date for the value, by writing temporal
Testrictions expressing ‘before’, ‘after’ or ‘at’ a time point, and the dependencies of the
predicted values, which, in the case of rule-based agents, are, by default, the values
matching the Ihs of the rule. If the slot is a temporal slot, then the function is used to create
a current or a predicted temporal value (dependent-prediction) according to the values in
dependencies (premises):

~if there is at least one predicted temporal value in dependencies, then the asserted value
will be predicted.

198 V. Botti et ol. | Data & Knowledge Engineering 15 (1995) 189-211

—if ali the values in dependencies are current or past temporal values (at least one current) 4

then the asserted value will be current.
- if all the values in dependencies are past temporal values then the asserted value will be

past (it is possible to decide not to assert past values).

In the former case, when all the predicted values supporting the asserted value (premises)
change to current, then the created value also changes to current. And if some predicted
premise is not fulfilled, then the asserted predicted value will be deleted.

When a current value is asserted in a slot, if there is a previous current value in it and no
contradiction is detected, then this current value is moved to its historical buffer of past
values. If a contradiction is detected, a message for the control is sent. The end time of this
previous current value is modified with the date corresponding to the begin time of the new

created current value.

b R A o B I ¢

Lo By pemmomy

The KDM informs other components in the system when new curreat, past or prediction
values are created or predictions are fulfilled or deleted. Each created prediction is a local one
until it becomes global in the commit-step. Predictions can be created starting from local or
global values (either current or predictions). When only local predictions are involved in the
creation of a new one, all links between rule LHS and RHS are local, and thus stored in the
same data structure. But if any global prediction appears in the premises of a predict-slot-
value or put-slot-value functions, then it is necessary to hold a special link between the global
and local prediction. By means of this special link between local and global predictions, global
predictions can be matched locally. This avoids having to redo the reasoning process with the
new value, which matches the prediction, but it may create an inconsistency between the
global and local memory. A global value can match the global prediction as well as the local 3
one. A local value can match local predictions, but such a value would not be communicated

to the KDM until the commit-step.

¥
t
5. Multiple access and coherence management [
In this section the multiple access and coherence management protocol implemented in the ¢
REAKT architecture is described. The proposed protocol must take into account the expected t
behavior of agents: c
» T
| 1. Agents execute a Knowledge Source (
2. For an agent to be executed, CONTROL must do the following sequential operations t
a) create the agent (or KS instance) . £
b) read data (resources) from the KDM
¢) reason about them using a local memory v
a

d) write results into the KDM

3. When a deadline for an agent is reached, CONTROL kills the agent. All results which | i
have not yet been written in the KDM are lost. 9

one current)

ralue will be

e {premises)
ne predicted

:in it and no
uffer of past
| time of this
e of the new

or prediction
is a local one
rom local or
volved in the
stored in the
predict-stot-
en the global
ctions, global
icess with the
between the
il as the local
ommunicated

nented in the
- the expected

operations

results which

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211 159

4. Several agents are executed simultaneously.

One problem related to the information coherence arises when several agents must be
executed concurrently [11]. The KDM has to serve queries (transactions) from agents to read
or write data. In the REAKT architecture, these transactions have timing and consistency
constraints that must be accomplished. In order to provide response for queries and updates in
the available time while maintaining the consistency of data, real-time concurrence control
should involve efficient integration of ideas from both database concurrence control and
real-time scheduling [18-20}.

Several concurrence control protocols have been proposed using either pessimistic or
optimistic approaches. In the pessimistic approaches, based on the two-phase locking protocol
[17], problems are anticipated tending to delay transactions with data conflicts in order to
avoid them later. These protocols allow for multiple reads and writes of different objects, but
several locks in the same data object are not possible.

Optimistic approaches are based on the assumption that nothing will go wrong. When the
transaction is ready to commit, conflicts are checked for and a resolution scheme is then
applied to solve the conflicts. To resolve the conflicts, this approach uses a drastic solution: it
aborts the transaction. A general approach is to utilize existing concurrence control protocols,
such as the two-phase locking, and to apply time-critical transaction scheduling methods that
favor more urgent transactions. However, some problems can be detected when using these
protocols as a result of two operations: blocking and roll-backs of transactions. Both are
barriers to meeting time-critical schedules.

5.1. Multiple access conflict resolution

The assumed environment is based on the KDM with agents sending queries (transactions).
Each transaction has an initial priority and a start-time-stamp. As the result of work with
temporal values, the time-stamp of deduced facts is part of the data. Each data value has its
begin and end time associated.

The execution of each transaction is based on the Two-Phase Locking protocol with three
different phases: the read phase, the wait phase and the write phase. During the read phase, a
transaction can read from the database and write to its own local memory. This write
operation will be referred as a prewrite operation. Before the transaction may perform a
reading, it must obtain the read-lock on the data object it is interested in. To perform a write
(prewrite) operation in its local memory, the transaction also has to obtain the write-lock on
the data object. The read and prewrite operations can be done at any moment during the read
phase.

After the transaction is completed, previous to writing the results in the database, it has to
wait in the wait phase. When its turn has been granted, the process shifts to the write phase
and downloads all the prewrite objects into the database.

The protocol with priorities is based on the principle that higher priority transactions should
be completed before lower ones. If two transactions conflict, the higher priority transaction

'ShOll_Id precede the lower priority transaction.

200 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211

Agentl ; write lock
write a value
Agent2 a
Agentd
-
Time

Fig. 5. Write lock example.

Depending on the priority and the order of the transactions, several possible conflicts can be
found when different agents access to the same data (slot).

& Several read operations: all of them are granted.

e Several write operations: all of them are granted. The deduction time of each agent
determines the final temporal ordering. Fig. 5 shows how three different tasks (agents) want
to write on the same data and ask for a write lock that is granted by the KDM. Assuming t0,
t1 and t2, as the begin time of the value, each write is performed in the local memory. In the
write phase, values are written into the global memory. Using temporal attributes of data,
the KDM maintains the coherence of deductions. The value evolution is shown in Fig. 6.

e A read operation before a write operation of a higher priority agent: in this case the less
important task is aborted if it is in the execution (read phase). If it is in the wait phase, the
write lock is delayed until it finishes.

e A write operation before a read operation of a higher priority agent: in this case the less
important task is adjusted (wait phase) to ensure the coherence during the higher priority
agent execution.

® Other cases in the serialization (first higher agents and then lower ones) are not considered
due to the scheduling policy and the assumption about non input/output blocking of agents.

5.2. KDM-agent communication

Rule based agents and real-time tasks work with important differences with respect to
resource management. In this case, REAKT agents work with first order rules, so they require
reading all instances they are interested in. A large amount of data should be locked in the

before t, | X |
at ty | X i a |
at ¢, | X [a | b i
at ts | x jcja | b l

Fig. 6. Evolution of slot values.

nflicts can be

f each agent
{agents) want
Assuming t0,
:mory. In the
vates of data,
~n in Fig. 6.
case the less
ait phase, the

case the less
igher priority

ot considered
ing of agents,

th respect to
) they require
locked in the

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211 2m

agent initialization. But not all these data will satisfy rules, only a small number of them
(optimistic approach) will do. Indeed, only current values that match 1HS of a rule should be
locked. Therefore, it is convenient to provide two kinds of read operations:

1. Without lock: it is used in the agent initialization; KDM sends all required slot values to the
interested agents. When a value is updated in the KDM, a message should be sent to all
interested agents which have not applied a locking on this slot.

2. With lock: the concrete slot value is involved in a rule that has already been accomplished.
Before firing the rule, the agent must inform the KDM of its interest in a read lock on that
slot.

The system reactivity with respect to an agent decreases as long as the agent is granted
locking operations on the slots. Resources should be locked when they are needed. A rule
requires that the system lock a value in either of these two cases:

1. a single pattern in the LHS of a rule is satisfied. When this occurs it means there exists a
matching of the pattern to a temporal value (either acquired from the external world or
deduced by the application). In this case the temporal value matching the pattern should be
locked.

2. all the patterns in the LHS of a rule are satisfied, thus applying one lock of all instanced
slots.

The second choice seems more adequate because only required slots are locked in a
minimum of time. Since all nodes to be modified are already known in a rule, it would be
possible to perform a write lock at the same time as a read lock. A description of the relation
and queries between an agent and the KDM is shown in Fig. 7.

At the initialization, each agent receives the values of all the slots it is interested in. As soon
as a slot value is updated into the KDM and no read lock has been requested by the agent, it
is sent to all agents in the same condition. When a LHS of a rule is satisfied, slot values in the

KDM message to update
unlocked gbiects

Read operation without lock [& o e
{} Agent initialization l Wait phase

@ Read and write lock. 7

Agent execution: level Commit phase

LHS completed

Fig. 7. KDM/agent communication.

202 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211

LHS are read-tocked while slots in the right hand side are write-locked. At the end of the
commit phase all locks are released.

6. Example application: The tank scenario

The proposed scenario (Fig. 8) is an academic example application to illustrate the
functionalities of the REAKT toolkit. Many of the physical aspects have been obviated in
order to get a comprehensible scenario and focus on the relevant issues explained in the

} paper.

® The scenario is composed of two tanks connected through a valve. Initially both tanks are
empty. Process starts by filling Tankl, warming up the water and filtering the liquid to
Tank2 which in turn will supply the treated water to a chemical process. A kiln associated to
Tankl is in charge of warming up the water.

Water is provided to Tank1 whose maximum capacity is 500 liters. The kiln is permanent-
ly working at a constant temperature but water temperature varies as long as new input of
water is poured in Tankl. There is a sensor attached to the connect-valve to find out the
time at which 250 liters of water at approximately 100° can be found. Notice that the
temperature of the water in the tank gets colder when new streams are entered in Tankl
through the inp-valve.

The connect-valve is programmed to open during two time units (from here on, time
unit = sec) in order to let the 250 liters pass to Tank2. Once the water is in Tank2 the
out-valve will flow 200 liters to the chemical process; volume in Tank2 must never drop
below 50 liters.

Inp-valve

Tankl —

ﬁ Kiln

Connect-valve

ﬁ Tank?

Chemical Process

Qut-valve

Fig. 8. The tank scenario.

1e end of the

ilustrate the
n obviated in
jained in the

woth tanks are
the liquid to
1 associated to

is permanent-
i new input of
o> find out the
otice that the
sred in Tank1

here on, time
in Tank2 the
st never drop

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-Z11 203

The kiln takes around 2 time units to warm up the first 100 liters poured in Tankl. Since
the following inputs of water will be mixed with warm water, the kiln will take different
times to warm up the whole contents of the tank. This will depend on the amount and the
temperature of the water contained in the tank, the flow of water falling in Tankl etc.

The normal behavior of the process is as follows:

— Initially both tanks are empty

— Open inp-valve to fill Tankl with water

— Tank1 begins filling with 500 liters (4 sec)

— At the same time, the kiln begins warming up the water at =~100° (6 sec: this duration
comprises the 4 sec of filling the Tank)

— Close inp-valve when water flow has stopped

—~ Let the kiln warm up the whole volume of water (up to 6 sec for 500 liters).

— Open connect-valve when there are 250 1. at =100°. In case water is still being poured in
Tankl1, close inp-valve before opening connect-valve

- Emptying Tankl and Filling Tank2 (250 1. approx. in 2 sec)

— Close connect-valve

— Open inp-valve to fill Tank1 again with water (Tank1 fills up to 500 liters: input flow =250
1. =2 sec)

— At the same time open out-valve (supply water from Tank?2 to the chemical process)

— Kiln warms up the water. (6 sec for 500 1.)

— Open connect-valve when there are 250 1. at =100°

e For the sake of simplicity the example application has been simplified and some details have
been omitted. In a real process we can also find control loops for the overflow in Tankl and
Tank? as well as a control procedure to ensure the kiln temperature always ranges over the
correct values.

® We are now given the following situation:

— Tank! was initially filled with 500 liters and everything proceed as stated above.

— Second time, volume in Tank1 did not reach 500 liters but only 400 liters (the water flow
input was not the expected one). The kiln took 4 seconds to warm up the water. The
connect-valve worked properly and again 250 liters were poured in Tank2 in 2 sec.

— Next time, input flow in Tankl has also decreased in 100 liters. The KDM registers the
different values the water-level in Tankl has taken on at different times. From this
knowledge we can infer how the volume in Tankl will evolve. The goal is to predict and
advance the next and following states in the process in order to propose actions in case a
fault is detected in the process (either volume in Tank1 does not reach 250 1. or volume in
Tank2 drops below 50 1.).

® Input variables in the process are read through sensors and they stand for the data acquired

.:-_frorn the external world. These values are then communicated to the KDM. In our example
..-_.t__he_se variables are:

204 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211

— water-level in Tankl. The KDM is informed about the level in Tankl at each time the
inp-valve is closed, that is: |
— at the time Tank1 has reached 500 1. if everything evolves normally or
~ when the water flow has stopped or
Under normal conditions, the KDM will receive this information within 4 sec the first time
and every 6 sec for the successive times.

— water-level in Tank2. The KDM is informed about the level in Tank?2 at each time the
connect-valve is closed. This means that the expected volume in Tank2 will be 250 1. every
8 sec under normal conditions.

— water-temperature in Tank1. The water temperature varies as long as water is introduced
in the tank. The KDM is informed about the temperature at the same time the level is

read and when the required quantity of water has reached 100° in order to open the
connect-valve,

L B T

® Notice the difference between the observable values (water-level and temperature) and
non-observable values (connect-valve opening, closing ...). The latter are directly
governed by the controlling system (i.e. the REAKT application) whereas the behavior of
the observable values is given by the controlled system (e.g. the industrial plant; in our case
the scenario composed of the two tanks, the valves, the kiln etc.) :

® Following we show the most relevant slots in each of the objects in the application. For the
sake of simplicity the kiln is not represented as an object. Qur choice is to state the kiln task
(i.e. warming up the water) as a slot named ‘water-temperature’ in the class TANK.

CLASS TANK: be
Tankl, Tank2: th
— water-level {temporal slot which takes on a numeric vatue} th
— water-temperature {temporal slot which takes on a numeric value} tir

—associated-alarm {all tanks have an associated alarm. This static slot keeps the alarm . ta
identifier}

—name {static slot for the name of the tank}

CLASS ALARM:
Alarm-Tank?2:

—status: {Values for this temporal slot are ‘ON’, ‘OFF’}

CLASS VALVE:

Connect-valve:
— status {temporal slot with values ‘OPEN’, ‘CLOSED’} S
~ input-tank {static slot to store the input tank identifier #Tank1} o
~ output tank {static slot to store the output tank identifier #Tank?2} :

There exists two agents: the first one performs the control of TANKI (water-level, kiln
temperature, process of warming up the water) and second’s agent task is to ensure th

optimal water level in TANK2. First agent is only interested in data about Tank1 and Agent2

sach time the

. the first time

sach time the
e 250 1, every

is introduced
e the level is
- to open the

perature) and

are directly
ie behavior of
at; in our case

ation. For the

e the kiln task
: TANK.

eps the alarm

ater-level, kiln
to ensure the
k1 and Agent2

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211 205

is interested in both Tankl and Tank2 as many of the deductions for Tank2 depend on
knowledge about Tankl.

Rules for the first agent are:

R1: R1 shows the process behavior under normal conditions. Once Tank1 contains at least 250
1. at 100° the connect-valve is open and a prediction on the volume of Tank2 is done. The
prediction is used to confirm that everything worked properly: the connect-valve was open for
two seconds and 250 1. of water were poured in Tank2.

(((in-class 7Tk TANK
(when (?Tk water-level Twat-lev))
(=="7wat-level 250)
(when (?Tk ternperature Ttemp))
(>="temp 100°%))

(in-class ?Vi VALVE

(input-tank ?Tk-inp)
(output-tank ?Tk-out)
(=7Tk ?Tk-inp)))

N

(put-value 7V1 status OPEN)

(predict-value 7Tk-out water-level 250 (begin 1 3))

;; temporal slot
1, condition on the slot value
;; temporal slot
;; condition on the slot value

R2: R2 verifies a possible malfunction in the system. To do that, R2 makes a comparison
between the two last past temporal values and the current value of the water-level in Tank1. If
the level has been decreasing at each time (i.e. there exists a total order relation between the
three values), the KDM performs a prediction of the volume in Tankl at the next instant of
time. Function ‘evolution’ returns the estimated value. The temporal interval is set by the user
taking into account that Tank1 will empty 250 1. within a short period of time.

{(in-class 7Tk TANK
(name TANKI)
(past-value (?Tk water-level ?wat-levl 7Tbegl ?endl))
(past-value (?Tk water-level Twat-lev2Z 7beg2 7end2))
(when (?Tk water-level Twat-lev3))
(>="7wat-lev3 250)
(temporal-test (?beg2 after ?begl))
(<?wat-levl ?wat-lev2 ?wat-lev3))
3
(predict-value 7Tk water-level (evolution ?wat-levl ?wat-lev2 ?wat-lev3)
(begin 4 6)(end 10))

R.3= R3 makes the valve to close when a volume lower than 250 liters is detected in Tankl.
nce ti_le new level for Tank1 is still a prediction, the action of firing the rule is a dependent
re§1§tion, i.e. as soon as the prediction is confirmed the valve will be closed. The valve may

206 V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211

happen to be already closed when the LHS prediction is fulfilled. But in case the valve were
open it would be closed immediately. R3 determines the closing of the connect-valve under
abnormal conditions.

(((in-class 7Tk TANK
(when (7Tk water-level Twat-lev))
(<?wat-lev 250)
{(name TANK1))

(in-class ?7V1 VALVE

(input-tank ?Tk-inp)
(=7Tk ?Tk-inp)))

—_—

(put-value ?V1 status CLOSED)

Second agent is in charge of following the evolution of Tank2. Since the behavior of Tank2
is linked to the evolution of Tankl, Agent2 will be interested in data for both tanks.

R4: The same as for R1, R4 states the facts that should happen in the application under
normal conditions. When Tank?2 is filled with 250 L. the connect-valve is closed. This implies
that both the inp-valve and out-valve will open to start the process again (the latter statements
are omitted; only the connect-valve is managed in the example). R4 stands for the normal
closing of the connect-valve.

(((in-class ?Tk TANK
(name TANK2)
(when (?Tk water-level ?wat-lev))
(>="7wat-lev 250))

(in-class 7V1 VALVE

(output-tank ?Tk-out)
(=7Tk 7Tk-out)))

>

(put-vatue ?V1 status CLOSED)

RS: RS checks the water-level in TANK2. In order to control the level never drops below
50°C. in Tank2, Agent2 performs a checking on those predictions that point out a possible fall
in the volume of Tank1. If the volume in Tank1 is predicted not to reach the necessary 250 1.
at any point and that value is estimated to last 5 or more sec, Tank2 will run out of water very
rapidly. Consequently, the alarm associated to Tank2 is planned to be fired as soon as the
system is informed about such a possibility.

(in-class ?Tk2 TANK
(name ?7Tk2 TANK2)
(associated-alarm ?A1)
(in- class 7Tkl TANK

Y

1e valve were
t-valve under

wior of Tank2
{ tanks.

lication under
[. This implies
‘ter stafements
or the normal

ar drops below
t a possible fall
1ecessary 250 1.
it of water very
as soon as the

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189211 207

(name ?Tk1l TANKI)
(when (7Tk1 water-level Twat-lev Tbeg 7end))
(<?wat-lev 250)
(temporal-test (?end after 7begin 5)))
e

(put-value ?Al status ON)

e Fig. 9 shows the process behavior. The starting point is the normal expected evolution in the
system. Tankl fills with 500 liters and the inp-valve is closed at that moment. The KDM is
informed about the current level and temperature in Tankl. After 6 sec have elapsed, the
connect-valve is open as the sensor attached to the valve detects the water has reached the
correct temperature. At this time the KDM is informed about the new water temperature.

——— CV: C t-val
Water-level in Fankl and Tank? Tanki crmeTvAYe

IV: inp-valve
s TaNKZ P

o OV: Cut-valve

Close IV
Water-flow 510p 1058 OV Close CV
Open CV Open CV Cpen CV
¢ * Close CV

Fill Tank! + + &

Fitl Tankl +
Warming up Fidt Tankl +

Warmiing up

Empty
ey, Empty

il

v

6 sec 2 sec 4 sec 2 sec 3sec 2 sec

Water-temperature in Fankl

120° 4
160° v

50° 4

\{

KDM values
Tankl-level
TankZ-ievel
Kiln-ternp
Valve-status e masirang LOS
Alarm-status CLOSED SLOSED * ON

Current values
Predictions
ETEOE Dependent-predictions

Fig. 9. Process behavior.

208 V. Botti et al. | Data & Knowledge Engineering 15 (1995} 189-211

R1 is fired and volume in Tank? is predicted to be 250 liters. The KDM is informed when
Tank? contains 250 1. (prediction fulfilled) and the connect-valve is closed at that time (R4).

® Next time the KDM is informed about 400 1. in Tank1 and a temperature of 75°C yet. When
the water is enough warm, the connect-valve is open and liquid is poured in Tank2. The
connect-valve is closed again. The process goes on and at the third input of water in Tankl
the system checks the slope in the water-level of Tank1 is decreasing (R2 is fired). Since the
new volume is estimated not to reach 250 1. the valve is planned to close at the same time
(R3).

® Agent! then commits its conclusions and Agent2 is then aware of a prediction on the level
of Tankl. R5 is then fired taking into account that the level in Tankl is estimated to be
below 250 1. for a period of at least 5 sec. An alarm is planned to ring at the same time that
the new value for the level of Tankl is calculated.

e At this time the system is ready to assist a possible malfunction in the system. In case the
prediction on the water level of Tankl is not satisfied (i.e. the flow of water increases and
Tank1 is filled again with 500 liters) all derivations from the old fact are deleted.

Two important features in the system are remarkable:

® Rules are also fired on future values. This functionality allows to anticipate changes in the
world and plan properly actions in accordance. In this way we can dispose of a picture of the
expected future and new inputs are only used to confirm the predicted changes (rules are not
fired again since the reasoning process was already done at an earlier time).

® The multiple access protocol permits agents to work with more reliable information. Notice
in the example that Agent2 does not execute until Agentl downloads all the changes in the
KDM. Let’s suppose for instance that the prediction on the water-level in Tank1 is deleted
while Agentl is still in execution. This prediction would not be then communicated to the
KDM and Agent2 would not reason about; otherwise Agent2 would be reasoning with a
false prediction.

7. Conclusions

In this paper, a temporal blackboard for a multi-agent world has been presented. Temporal
information is associated to the temporal attributes of stored objects using a model based on
time points. The proposed model permits us to represent a great number of situations
including temporal imprecision. In order to have efficient methods to be applied under time
constraints, past facts are stored with respect to an absolute clock and future facts are stored
using a graph when it is not otherwise possible due to the fact dependencies. Moreover, a
proposal for multiple access and coherence management has been described in this paper. The
following issues can be considered in the protocols: the lowest granularity level is at the slot
level, concurrence control and coherence are managed. The method proposed is appropriate
for working with agents as the timing constraints of agents are met as much as possible, and
the protocol allows working with agents when no computation time or resources are known in -
advance. '

formed when
at time (R4).
°C yet. When
) Tank2. The
ater in Tank1
2d). Since the
he same time

a on the level
timated to be
ame time that

n. In case the
increases and
eted.

changes in the
| picture of the
; (rules are not

nation. Notice
changes in the
ink1 is deleted
micated to the
asoning with a

1ited. Temporal
nodel based on
r of situations
jed under time
facts are stored
s. Moreover, a
this paper. The
el is at the slot
1 is appropriate
1s possible, and

es are known in

V. Botti et al. | Data & Knowledge Engineering 15 (1995) 189-211 209

The proposed architecture is the basis of the REAKT toolkit, a software environment for
the development and production of real-time knowledge-based systems, which is being used in
particular to develop an on-line alarm management application installed in a large oil refinery
in Italy. The main goal of the present work is to illustrate the adaptation of a temporal
blackboard to meet the requirements of real-time knowledge-based systems: in particular it
provides functionalities allowing continuous operation and data input handling, efficient and
powerful knowledge-based reasoning and temporal reasoning.

Acknowledgments

The authors acknowledge T. Chehire, A. Mensch, J.Y. Quemeneur, D. Kersual, F.
Charpillet, J.J. Galan, I. Rodriguez, E. Pezzi, C. Luparia, A. Lupi, M. Shenton and R.
Fjeltheim for their comments and their participation in the global architecture described in this
paper.

References

{1] 1.F. Allen, Towards a general theory of action and time, Artificial Intelligence 23 (1984).
[2] A. Crespo, V. Botti, F. Barber, D. Gallardo and E.Onaindia, A temporal blackboard for real-time process
control, Engineering Applications of Artificial Intelligence 7 (3) (Pergamon Press, 1994) 223-266.
[3] F. Barber, V. Botti, E. Onaindia and A. Crespo, Temporal reasoning in REAKT: An environment for
real-time knowledge-based systems, AICOMM. 7 (3) (1994) 175-202.
f4] R. Bisiani and A. Forin, Parallelization of blackboard architectures and the Agora system, in: Blackboard
Architectures and Applications (Academic Press, 1992).
[5] D. Corkill, Design alternatives for parallel and distributed blackboard systems, in: Blackboard Architectures
and Applications {Academic Press, 1992).
[6] A. Crespo, J.L. Navarro, R. Vivé. A. Espinosa and A, Garcia, RIGAS: An expert server task in real-time
environments, IFAC/IFIP Symp. on Artificial Intelligence in Real Time Control, Delft (1992).
[7] Y. Demazeau and J.P. Miiller, Decentralized artificial intelligence, in Decentralized AL (North-Holland,
1990) 3-13.
(8] J. Ferber and M. Ghallab, Problématique des univers multi-agents intelligents, in: Actes des Journées
Nationales Intelligence Artificielle (Teknea, Toulouse, 1985).
[9] M.P. Georgeff and A.L. Lansky, eds., Reasoning about Actions and Plans (Morgan Kaufman, 1987).
[10] B. Hayes-Roth, Architectural foundations for real-time performance in intelligent agents, Real Time Syst. 2
(1,2).
[11] V. Jagannathan, Realizing the concurrent blackboard model, in: Blackboard Architectures and Applications
{Academic Press, 1992).
[12] T. Dean, Using temporal hierarchies to efficiently maintain large temporal databases, JACM 36 (4) (Oct.
1989) 687-718.
{13] V.R. Lesser, J. Pavlin and E. Durfee, Approximate processing in real-time problem solving, Al Mag. 9 (1)
{1988).
[14} A. Mouabdid, F. Charpillet and J.P. Haton, Approximation and progressive reasoning, Proc. AAAI
Workshop on Approximation and Abstraction of Computational Theories, San Jose (July 1992).
115] ?’.Perkins and A.Austin, Adding temporal reasoning to expert-systems building environments, IEEE-Expert
Feb. 1990).

210 V. Botti et al. | Data & Knowiedge Engineering 15 (1995) 189-211

[16] Thomson, Syseca, Crin, GMV, UPV, Marconi and Etnoteam, REAKT: Environment and methodology for
real-time knowledge based systems, ESPRIT II 4651 (1990-93).

{17] L. Sha, R. Rajkumar, S. Son and Ch. Chang, A real-time locking protocol, IEEE Trans. Comput. 40 (7) (July
1991).

{18] A, van Tilborg and G. Koob, Foundations of real-time computing: Scheduling and resource management, in:
Concurrency Control in Real-Time Database Systems (Kluwer Academic, 1991).

[19] S. Son and J. Lee, A new approach to real-time transaction scheduling, in: Proc. Fourth EUROMICRO
Workshop on Real-Time Systems, Athens, Greece (June 3-5, 1992).

[20] A. van Tilborg and G. Koob, Foundations of real-time computing: Scheduling and resource management, in:
Scheduling in Real-Time Transaction Systems (Kluwer Academic, 1991).

[21] L. Steels, Cooperation between distributed agents through self-organisation, in: Decentralized A.I. (North-

Holland, 1990} 175-196.

Vicente J. Botti received the B.S.
degree in Electrical Engineering and
Ph.D. degree in Computer Science
from the Polytechnical University of
Valencia, Spain in 1982 and 1990
respectively. He is currently the head
of the Department of Computer Sci-
ence, Polytechnical University of Val-
encia, Spain. Since 1985, he has
worked on the development of know-
iedge-based systems. His research
interests include distributed Artificial
Intelligence, real-time knowledge
based systems and non-monotonic reasoning.

Federieo A. Barber received the B.S.
degree in Electronic Engineering
from the Polytechnical University of
Madrid, Spain in 1981, and the Ph.D.
degree m Computer Science from the
Polytechnical University of Valencia,
Spain in 1990. He is currently an
Associate Professor in the Depart-
ment of Computer Science, Polytech-
nical University of Valencia, Spain.
Since 1985 he has worked on the
development of knrowledge-based
systems. His main research areas

include knowledge representation, temporal reasoning and
planning.

Alfons Crespo received the B.S. and
Ph.D. degree in Electrical Engineer-
ing from the Polytechnic University,
Valencia, Spain in 1979 and 1984
respectively. He is currently a Profes-
sor of Computer Engineering and
Science at the Polytechnic University
of Valencia, Spain. Since 1988, he
has been the head of the Knowledge
Technology group, leading several
. national and European research pro-
Havty jects, His areas of technical interests

y are real-time systems, automation

process coatrol and real-time operating systems.

Eva Onaindia received the B.S. de-
gree in Computer Science from the
Polytechnical University of Valencia,
Spain in 1990. She is currently pursu-
ing the Ph.D. degree in Computer
Science at the Polytechaic University
of Valencia, Spain, where she is a
Teaching Assistant with the Depart-
ment of Computer Science. Her re-
search interests are in knowledge
representation, temporal reasoning
and Artificial Intelligence in real-
time.

Ana Garcia-Fornes received the B.S.
degree in Computer Science from the
Polytechnic University of Cataluna,
Spain in 1986. She is currently pursu-
ing the Ph.D. degree in Computer
Science at the Polytechnic University
of Valencia, Spain, where she is an
Assistant Professor with the Depart-
ment of Computer Science. Her re-
search interests focus on real-time
systems scheduling, real-time operat-
ing systems, and real-time know-
ledge-based systems.

Ismael Ripoll received the B.S. de-
gree in Computer Science from the
Polytechnical University of Valencia,
Spain in 1992, He is currently pursu-
ing the Ph.D. degree in Computer
Science at the Polytechnic University
of Valencia, Spain, where he is an
Assistant Professor with the Depart-
ment of Computer Engineering and
Science. His current research inter- .
ests are real-time systems scheduling
and concurrency control.

methodology for
aput. 40 (7) (July
management, in:
1 EUROMICRO
management, in:

zed A1 (North-

eived the B.S. de-
¢ Science from the
versity of Valendia,
: is currently pursu-
sgree in Computer
iytechnic Untversity
in, where she is a
1t with the Depart-
2r Science. Her re-
are in knowledge
:emporal reasoming
stefligence in real

35 received the B.S.
ter Science from the
«exsity of Cataluna,
e is currently pursu-
egree in Compuier
dytechnic University
in, where she i5 ai
ot with the Depart-
-er Science, Her re-
focus on real-time
ag, real-time operat-
1 real-time knowe
3ms.

sceived the B.S. de-
ter Science from the
niversity of Valencia,
de is currently pursu-
degree in Computer
‘olytechnic University
yain, where he is an
ssor with the Depart-
uter Engineering and

arrent research inter- o
1e systems scheduling |

y control.

V. Botti et al. / Data & Knowledge Engineering 15 (1995) 189-211 211

Dominge Gallardo received the B.S.
degree in Computer Science from the
Polytechnical University of Valencia,
Spain in 1991, He is Assistant Profes-
sor with the Department of Com-
puter Science, University of
Alicante, Spain. He is pursuing the
Ph.D. degree in Computer Science at
the Polytechnical University of Val-
encia, Spain. Current research inter-
ests include robot control architec-
tures, real-time systems and vision.

Luis Hernandez received the B.S.
degree in Computer Science from the
Polytechnical University of Valencia,
Spain in 1992, He js 2 Ph.D. candi-
date in Computer Sciemce at the
Polytechnic University of Valencia,
Spain, where he is a Teaching Assis-
tant with the Department of Com-
puter Science. His research interests
are in knowledge representation,
non-mongetonic reasoning and distrib-
uted Artificial Intelligence.

DATA & KNOWLEDGE ENGINEERING

Publication information

DATA & KNOWLEDGE ENGINEERING (ISSN 0169-023X). For 1985 volumes 1517 are schaduled for publication. Subscription prices
are available upon request from the publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar year
basis. Issues are sent by surface mail except to the following countries where air delivery via SAL Is ensured: Argentina, Australia,
Brazil, Canada, Hong Kong, india, lsrael, Japan, Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South
Korea, Taiwan, Thailand, USA. For all other countries airmail rates are available upon request. Claims for missing issues must ba made
within six months of our publication (maiting) date. Please address ali your requesis regarding orders and subscription querles to:
Elsevier Science BY, Journal Department, P.O. Box 211, 1000 AE Amsterdam, The Netherlands. Tel.: 31-20-4853642, fax:
31-20-4853598.

instructions to authors

All contributions should be written in English with an ahstract and a list of keywords, and should be sent in five copies to the

Editor-in-chief, the Editor for Europe, or one of the Editorial board members. The authors are requested to put their mailing address on

the manuscript. Upon acceptance of an arlicle, the author(s) will be asked 10 transfer copyright of the article to the publisher. This

transfer will ensure the widest possible dissemination of information. No page charge is made,

Please make sure that the paper is submitted in its final form. Corrections in the proof stage, other than printer's errors, should be

avoided; costs arising from such extra correclions may be charged to the authors,

The manuscript should be prepared for publication in accordance with instructions given in the "“Insiructions to Authors” (available from

the Publisher), details of which are condensed below:

t. The manuscript must be typed on one side of the paper in double spacing with wide margins. A duplicate copy should be retained
by the author. Electronic submissions (accompanied by a paper printout and the original figures) are welcome.

2, All mathematical symbols which are not typewritten shouid be listed separately.

3. Footnotes, which should be kept to a minimum and should be brief, must be numbered consecutively and typed on a separate
sheet in the same format as the main ext.

4. Speclal care should be given to the preparation of the drawings for figures and diagrams. Except for a reduction in size, they will
appear in the final printing in exactly the same form as they were submitted by the author; normally they wilt not be redrawn by the
printer. In order to make a photographic reproduction possible, alf drawings should be on separate sheets, with wide margins,
drawn large size, in India ink, and carefully iettered. Exceptions are diagrams only containing formulae and a smal number of single
straight fines (or arrows); these can be typeset by the printer.

5. Relerences must be numbered alphabetically. in the text they should be referred to by brackeled numbers. The list of references
must be typed on separate sheets, in the same format as the main text, and ordered consecutively, according to the foliowing
models:

For a paper in a contributed volume:!

{1] R. Elmass and G. Wiederhold, GORDAS: A formal high-ievel query language for the entity-reiationship model, in: P.P. Chen,
ed., Entity-Relationship Approach to Information Modeling and Analysis (North-Holland, Amsterdam, 1983} 48-72.

For a paper in a journai:

[2] J. Mackinlay and R. Genesereth, Expressiveness and language choice, Data & Knowledge Engrg. 1 (1985) 17-29.

For & book:

[3] H.F. Korth and A, Silherschatz, Database System Concepts (McGraw-Hill, New York, 1986),

For an unpublished paper:

[4] 8.E. Fahiman, A system for representing and using real-world knowledge, MIT Technical Report Al-TR-450, Cambridge, MA,
1977.

6, When accepled the final manuseript should be sent to the corresponding editor, together with a photo {passport-size) and a short
biography of each author.

Note 1o authors: Please mention your email address and/or fax number an the first page of your manuscript.

© 1995, Elsevier Sciance BV All rights reserved

No pan of this putlication may be reproduced, stored in a ratriaval system or transmitted In any form ar by any means, slectronic, mechanical, photecopylng, recording or
ghg!rw‘;sea without the written permission of the publisher, Elsevier Science BV, Copyright and Permissions Department, P.O. Box 521, 1000 AM Amstardam,
ethertands.
Special regulations for authors. Ugan acceptance of an arlicle by the joumnal, the author{s) will be asked to transfer copyright of the article to the publisher. The transfer
wilt ensure the widest possible dissemination of information,
Spgc!ar reguiations for readers in the USA. This journal bas been registered with the Copyright Clearance Center, in¢. Consent is given for copying of articles for persenad
or internal use, or for the personat use of spacific cfients, This consent is given on the cardition that the sopler pays thraugh the Center the per-copy fee statad in the
¢ade on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the U.S. Capyright Law. The appropriats fee shauld be forwarded with &
capy of the first page of the article ta the Capyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. ¥f no code appears in an arlicle, the author
has not given broad cansent to copy and parmission to copy must be obtained directly fram the auther, The fees indicated on the first page of an article ir this issue witl
apply retroactively to all articles published in the journal, regardiess of the year of publication. This cansent does not extend to other kinds of copying such as for genera
g;sm!ﬂu!ion. resale, advertising and promotian purposes, or for creating new coltective works. Special written permission must be obtained from the publisher for such
pying,

Mo responsibility is assumed by the Publisher for any injury and/or damage to persons or proparty as a matter of products liability, negligence or atherwise, or from aay

use or operation of any methads, products, instrucfions or ideas contained it the materiat herain. Aithough all advartising maderial is expected to conform o sthicat

aﬂﬂdfard& inclusion in this publication does not conslitute a guarantes or endorsemant of the quality or value of auch praduct or of the cigims made of it by its
anufacturer,

