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Abstract

The multi-agent system paradigm emerges as an interesting approach in the Knowledge Based System (KBS)
field, when distributed problem-solving techniques are required for solving problems that can be represented as a
collection of groups of cooperating intelligent individuals. A key concept in the multi-agent systems is the
interaction between agents. On the other hand time plays a crucial role in a wide range of KBS applications.
Temporal reasoning and representations consists of formalizing the notion of time and providing means to
represent and reason about the temporal aspects of knowledge. This paper presents a framework for agent
communication based on the blackboard paradigm which is able to manage temporal information, and it provides
its multiple access and coherence management protocols.

Keywords: Blackboard; Knowledge-Based Systems; Real-time; Multi-agent; Temporal reasoning; Temporal
Representation

1. Introdaction

The multi-agent system paradigm emerges as an interesting approach in the Knowledge
Based System (KBS) field, when distributed problem-solving techniques are required for
solving problems that can be represented as a collection of groups of cooperating intelligent
individuals. On the other hand, temporal representation and reasoning problems arise in a
wide range of KBS application areas, where time plays a crucial role, such as in process
control and monitoring, fault detection, diagnosis and causal explanation, resource manage-
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ment and planning, etc. In these cases, temporal data representation and coherence
management are needed in order to obtain conclusions about the problem.

A multi-agent world can be defined as a system in which several agents interact [9]. An
agent is considered as a physical or abstract entity which is able to act on itself and on its
environment in order to rmanipulate a partial representation of its environment and to
communicate with other agents. The agent’s behavior is a consequence of its perception, of its
knowledge and of its interactions with other agents.

Two main directions have emerged in the research field related to the study of multi-agent
worlds [8]:

® Multi-expert system paradigm or Distributed Artificial Intelligence (DAI): Agents, repre-
sented by a knowledge base or a specialized procedure, can be considered as specialized
modules interacting together according to a specific architecture.

® Robot acting in a multi-robot environment paradigm: Agents can be considered as
autonomous entities which have perception and communication capabilities, as well as
decision abilities. They can act on their environment in an autonomous way.

A key concept in the multi-agent paradigm is the interaction between agents. This
interaction cannot only be considered by single message exchange. Usually, communication
occurs through sophisticated protocols for informing, requesting or convincing [7]. There are
different levels of interaction between agents [7]:

® strong interaction between decision capabilities,
¢ medium interaction between reasoning capabilities, and
® weak interactions between perceiving capabilities.

This paper deals with the last kind of interaction between agents. The weakest interaction
which can be found among several agents is to use the external world to exchange
information. In fact, behavior can be described as deriving directly or not, from the
knowledge an agent has about its environment. Sending information to an agent (communica-
tion case) or modifying the environment (world used as a blackboard) are two means by which
cooperative behavior can be achieved among loosely coupled autonomous entities [21].

From the previous considerations, the need for computational models for providing a
framework to communicate agents is inferred. In this sense, we can find two paradigms [7]:

® the actor paradigm, which is based on an object-oriented language where each agent has an
independent life and communicates with others by sending messages,

® the blackboard paradigm, in which agents communicate by writing on a shared structure
called a blackboard [4,5,10].

‘The work presented here is based on the second paradigm, and it provides a framework for
sharing coherent information between agents. The blackboard is structured for organizing
communications at various levels of abstraction, and an agent communicates with another one
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by writing on the blackboard. Those agents are activated (by the control component) when
given patterns of information are present on the blackboard.

In this paper, a Temporal Blackboard framework for a multi-agent world, including
concurrence control protocol, is described. The blackboard is a component in a real time
expert system shell developed in the framework of the REAKT Esprit project [16].

2. Temporal information

Temporal information (Fig. 1) in dynamic systems is relevant in order to know the
evolution of the system behavior and the time-stamped deduced values and to be able to
reason with them (temporal constraints or dates for each data, trends, threshold crossing
dates, average values in an interval, etc.) [1,15]. With a reified approach, problem temporal
data are projected on a time line. It is assumed that a temporal value holds in a temporal
interval defined by its extreme time points (I”, I7) [12]. From a temporal point of view, a
temporal value can be:

© exactly known: the time at which the value has been taken and its duration are known (the
ALARM was ON from 10:20:03 till 10:28:45).

® partially known: the value is the result of a sampling and the end time of the value i8
undefined (the TEMPERATURE at 10:23:22 was 120 degrees)

® known with imprecision: a variable value starts or finishes at some point within an interval
(the KILN-STATUS will be HIGH before 20 minutes).

- ™\
PAST VALUE
i
10:26:03 10:28:45 now Time
CURRENT VALUE

- T=120°

= 2 Time

2322

4 FURUREVALUE
- L
W 00 TFime

\_ MM Temporal window of an acurrence

[ Begin time of a fact
1 Endumeorata

Fig. 1. Temporal information.
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® dependent: the starting or ending time of a temporal value depends on other temporal facts
(the ALARM will turn ON 5 minutes after the KILN-STATUS is HIGH)

Additionally, it is necessary to make predictions about process variables and reason with
them to be able to take actions in advance to avoid future problems (predictive control).
Consequently, the need for temporal information management requires handling the following
kinds of information:

® Past values will usually be ‘exactly known’ values related to the instant at which they were
produced, so, a date can be used to store them.

¢ Current values are the values that hold at the present time and can be assumed as ‘partially
known’ and ‘dependent’ values. They were asserted at known instants (i.e.: sampling period,
its begin time depends on the begin time of other values), and, as no more information has
been added, the same value could be maintained. A persistence attribute can be defined for
this type of value. If the persistence time is exceeded, a lack of information is produced and
no value is assumed. If there is no defined persistence, the last value is always maintained
until the next incoming value.

® Future values are used to represent expected or predicted values. Their management
presents more difficulties due to the lack of knowledge about the exact instant they will be
produced. Thus, as a temporally imprecise value, it can be predicted that a KILN-STATUS
will be HIGH at some instant before 20 minutes, but the concrete instant it will start or
finish, or its duration is not known. In advanced-future reasoning, predictions can deduce
other predictions. Thus, as a result of a causal prediction, temporally dependent values can
also be predicted for instance, ‘The ALARM will turn ON 5 minutes after the KILN-
STATUS is HIGH’. This temporal dependency must be represented in order to reason
about the future. When the causal prediction that originates the dependent predictions is
fulfilled, these dependent facts becomes temporally imprecise facts. Thus, when reasoning in
advance on present and future facts, rules can be fired with current or future facts, and
actions on the right-hand side of a rule have to be executed at the instant (present or future)
the values are deduced.

3. System architecture

In this section, the system architecture will be described. The system is built around a
Temporal Blackboard for a Real-Time Knowledge Based Architecture, named Knowledge
Data Manager (KDM). The KDM is integrated in the REAKT toolkit [16] a high-level
environment for the development and production of Real-Time Knowledge Based Systems.
The architecture of this temporal blackboard provides storage and management of application
objects used by a set of knowledge sources (KS) running concurrently (Fig. 2).

The main components in the architecture are:

e [CM: The Intelligent Communication Manager is a task that provides the interface with
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Fig. 2. REAKT global architecture.

external processes for sending and receiving data. ICM performs an intelligent filtering and
stores values in the KDM.

e KDM: The Knowledge/Data Manager implements a Blackboard (shared memory) for

temporal data. Temporal data are managed by means of a Time Map Manager (TMM)
module that is in charge of maintaining temporal relations between temporal information.
These temporal constraints are kept in a temporal graph: Time-Map (TM). The Reason
Maintenance System (RMS) module is in charge of maintaining the logical coherence of
temporal data. It deletes the deduced value when some premise is deleted or not fulfilled,
and it modifies the temporal status (past, current, predicted) of deduced values according to
the temporal status of premises [3].

® Agents are executable instances of Knowledge Sources (KS) which are the static compila-

tion entities holding the domain knowledge. A KS in the REAKT architecture can be
procedural or rule-based. In order to apply this approach to real time systems, each agent is
structured as an independent task (integrated by the KS, the inference engine and the local
memory or context, in the case of rule-based KS). Each agent is able to cooperate in a
concrete reasoning process to obtain a global solution. Sequential execution of agents

-provides the global answer to a goal. The system can be seen as a collection of agents

(reasoning modules) which share a common database (blackboard) and communicate with
each other by signaling events.

® Control: this module receives significant events in the system and, in consequence, creates

agents or sequences of cooperating agents (intentions) for solving a situation [13,14]. Several
agents can run concurrently as a consequence of external or internal asynchronous event
Occurrences.

® Real-Time Operating System (RTOS) Extensions: this module provides system calls to

create internal processes and to communicate and to synchronize them. Internal processes
can be scheduled using user defined policies [6].
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e Timer: It provides timing signals and message manipulation to execute actions at determined
instants with respect to a real time clock.

All these components are organized as a process in order to concentrate all intelligent
activities and to apply more complex scheduling policies to guarantee the best quality answer
in the specified response time. This process is called Expert Server task and is implemented as
a separate process on top of a UNIX operating system with real time extensions [2}.

4. Blackboard structure

In this section, we will describe the Temporal Global Memory of a Real-Time Knowledge
Based Architecture, named Knowledge Data Manager (KDM). The architecture of this
temporal blackboard provides storage and management of application objects used by a set of
agents reasoning concurrently.

The KIDM data structure has an object-oriented approach (Fig. 3). Each object in the
blackboard has a set of static and temporal slots. The structure of a temporatl slot is formed by
three set of pointers [past, current, future] to Temporal-slot-value structures.

The Temporal-Slot-Value class is defined by means of a value and its begin and end points
are defined as the dates between where the value was, is, or will be taken. When the
occurrence time of a temporal value is not precisely known, these fields contain a tmnode
{objects that implement time points managed by the TMM); otherwise these slots will keep a
real number as they stand for dates or absolute times. Each tmnode represents a time point
and it has a set of temporal constraints with other ones.

There is a one-to-one mapping between temporal values and RMS nodes, the latter being
used to compute the status of the associated temporal value. The value of the dependencies
slot wiil be an instance of the rms-node class. This class is composed of two basic attributes:
the depends-on slot will contain all the support-pointers that denote different derivations of
the temporal value associated with this rms-node. Each support is basically constituted by a set
of rms-nodes denoting that the belief of this rms-node depends on the belief of each rms-node
in the support. The support-to slot of a rms-node will contain all the pointers to those
rms-nodes whose belief is subject to the belief of such rms-node.

In the KDM architecture (Fig. 4), the Time Map Manager (TMM) module is in charge of
maintaining temporal relations between temporal information: creation, deletion, and tempo-
ral relation management between temporal values. The Reason Maintenance System (RMS)
module is in charge of handling the logical dependencies between temporal values, deleting
each consequent of a temporal value when this one is deleted, it is also in charge of modifying
the temporal status (past, current, predicted) of deduced values according to the temporal
status of premises (this change in the temporal status of deduced values can also be caused by
the incoming of new data or by the deletion of an outdated prediction in the TMM). Both
TMM and RMS components allow for managing logical dependencies and the coherence of
temporal values.

TMM only keeps future values, considering an end point of a current value as future data
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Fig. 3. KDM internal data structure.

until the current value becomes a past value. Hence, a time point with a precise time can be
deleted from the TMM after propagating its consequences.

Initial data for each agent creates its initial local-kdm, by a reference-link from global-kdm.
A local-kdm is a set of local dates which are independent from other local-kdm’s. The
local-kdm structure is the same as for a global-kdm and all KDM operations have the same
behavior when they are to be applied on a different temporal data structure. Each agent works
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Fig. 4. Temporal blackboard.

on its local-kdm, where it writes its intermediate data. At the end of the agent execution,
global data in the local-kdm are committed to the global-kdm. Thus, this global-kdm stores
the shared data for all agents.

4.1. Blackboard interface

Blackboard interface provides a set of functions that can be used by a user language to
express actions, such as class definition, object instances, and temporal updates and queries.
Some of these functions (query functions) can be used as rule predicates in the left hand side
(LHS) of rules (queries in procedural agents), and others can be called from the right hand
side (RHS) of rules (actions in procedural agents) updating the internal information.

With respect to the Left-Hand Side temporal functions provided by the blackboard, they can
be stated as:

® when (object slot value begin end): This predicate is satisfied for those temporal values
(current or predicted) which, belonging to the temporal slot, match the value. The begin
and end of the temporal value may be instanced in variables. They can be either a date
value or a time point.

® past-value (object slot value begin end): This predicate is satisfied when a current value in the
defined slot is outdated and is moved from current to past.

¢ temporal-test (any temporal expression): this function is used for asking about temporal
relations between: i) dates, beginnings or endings of temporal values or ii) dates or time
points obtained from the begin or end of a temporal value and the current time (NOW).The
temporal-test management is achieved by using the TMM internal functions to inform at the
moment that the temporal-test becomes true, by changing their temporal windows.

Temporal intersection is a concept related to the validity for rule application. When a future
value created in the KDM depends on other predictions, it is necessary to primarily ensure the -
simultaneous completion of these temporal dependencies in order to infer the prediction in the
conclusion. The temporal window defined by the temporal-intersection between the values
matching the LHS premises is called ‘LHS-TIME’ and it is bounded by two time-points:
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[begin-lhs-time (Ihs-BT), end-lhs-time (lhs-ET)]. These time-points are managed by the TMM
module.

Blackboard functions on the Right-Hand Side of the rule modify the internal state by adding
values and predictions about slot values of nodes:

e predict-value (object slot value begin end dependencies): Adds a predicted value to a
temporal slot. The user specifies the begin (ths-BT by default) and end date for the value,
by writing temporal restrictions expressing ‘before’, ‘after’ or ‘at’ a time point, and the
dependencies of the predicted values (called premises in what follows), which, in the case of
rule-based agents, are, by default, the values matching the lhs of the rule.

The status of the created value is always predicted. It may change according to the following
specification:

—to current: a predicted value created with this function is changed to current when the
prediction is fulfilled. This can only occur when a new value (that matches the prediction)
arrives by means of a put-value (see function definition below).

— deleted: a predicted value is deleted in two cases: 1) when the upper time f its begin temporal
window arrives and the prediction has not been fulfilled and ii) when one (or more) of the
predicted values in dependencies is deleted.

The following meaning for the predicted values is assumed: a prediction is matched by a
new (predicted) temporal value when it has the same value and the begin and the end of the
new temporal value are respectively within the temporal windows of the begin and end points
of the prediction. Then no new prediction is created and the temporal window of the existing
matched prediction will be constrained in accordance with the new prediction and will also
update its prediction dependencies. In this case, pending queries can be updated. A prediction
is fulfilled by a new (current) temporal value when it has the same value and the begin and the
end of the new temporal value (current) are respectively within the temporal windows of the
begin and end of the prediction. If there is some prediction about the slot which is fulfilied by
the put-value (current value), then a new current temporal value is not created. Then the
status of the fulfilled prediction value is changed to current.

® put-value (object slot value begin end dependencies): This function sets a value to a slot. The
user specifies the begin (lhs-BT by default) and end date for the value, by writing temporal
Testrictions expressing ‘before’, ‘after’ or ‘at’ a time point, and the dependencies of the
predicted values, which, in the case of rule-based agents, are, by default, the values
matching the Ihs of the rule. If the slot is a temporal slot, then the function is used to create
a current or a predicted temporal value (dependent-prediction) according to the values in
dependencies (premises):

~if there is at least one predicted temporal value in dependencies, then the asserted value
will be predicted.
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—if ali the values in dependencies are current or past temporal values (at least one current) 4

then the asserted value will be current.
- if all the values in dependencies are past temporal values then the asserted value will be

past (it is possible to decide not to assert past values).

In the former case, when all the predicted values supporting the asserted value (premises)
change to current, then the created value also changes to current. And if some predicted
premise is not fulfilled, then the asserted predicted value will be deleted.

When a current value is asserted in a slot, if there is a previous current value in it and no
contradiction is detected, then this current value is moved to its historical buffer of past
values. If a contradiction is detected, a message for the control is sent. The end time of this
previous current value is modified with the date corresponding to the begin time of the new

created current value.

b R A o B I ¢

Lo By pemmomy

The KDM informs other components in the system when new curreat, past or prediction
values are created or predictions are fulfilled or deleted. Each created prediction is a local one
until it becomes global in the commit-step. Predictions can be created starting from local or
global values (either current or predictions). When only local predictions are involved in the
creation of a new one, all links between rule LHS and RHS are local, and thus stored in the
same data structure. But if any global prediction appears in the premises of a predict-slot-
value or put-slot-value functions, then it is necessary to hold a special link between the global
and local prediction. By means of this special link between local and global predictions, global
predictions can be matched locally. This avoids having to redo the reasoning process with the
new value, which matches the prediction, but it may create an inconsistency between the
global and local memory. A global value can match the global prediction as well as the local 3
one. A local value can match local predictions, but such a value would not be communicated

to the KDM until the commit-step.

¥
t
5. Multiple access and coherence management [
In this section the multiple access and coherence management protocol implemented in the ¢
REAKT architecture is described. The proposed protocol must take into account the expected t
behavior of agents: c
» T
| 1. Agents execute a Knowledge Source (
2. For an agent to be executed, CONTROL must do the following sequential operations t
a) create the agent (or KS instance) . £
b) read data (resources) from the KDM
¢) reason about them using a local memory v
a

d) write results into the KDM

3. When a deadline for an agent is reached, CONTROL kills the agent. All results which | i
have not yet been written in the KDM are lost. 9
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4. Several agents are executed simultaneously.

One problem related to the information coherence arises when several agents must be
executed concurrently [11]. The KDM has to serve queries (transactions) from agents to read
or write data. In the REAKT architecture, these transactions have timing and consistency
constraints that must be accomplished. In order to provide response for queries and updates in
the available time while maintaining the consistency of data, real-time concurrence control
should involve efficient integration of ideas from both database concurrence control and
real-time scheduling [18-20}.

Several concurrence control protocols have been proposed using either pessimistic or
optimistic approaches. In the pessimistic approaches, based on the two-phase locking protocol
[17], problems are anticipated tending to delay transactions with data conflicts in order to
avoid them later. These protocols allow for multiple reads and writes of different objects, but
several locks in the same data object are not possible.

Optimistic approaches are based on the assumption that nothing will go wrong. When the
transaction is ready to commit, conflicts are checked for and a resolution scheme is then
applied to solve the conflicts. To resolve the conflicts, this approach uses a drastic solution: it
aborts the transaction. A general approach is to utilize existing concurrence control protocols,
such as the two-phase locking, and to apply time-critical transaction scheduling methods that
favor more urgent transactions. However, some problems can be detected when using these
protocols as a result of two operations: blocking and roll-backs of transactions. Both are
barriers to meeting time-critical schedules.

5.1. Multiple access conflict resolution

The assumed environment is based on the KDM with agents sending queries (transactions).
Each transaction has an initial priority and a start-time-stamp. As the result of work with
temporal values, the time-stamp of deduced facts is part of the data. Each data value has its
begin and end time associated.

The execution of each transaction is based on the Two-Phase Locking protocol with three
different phases: the read phase, the wait phase and the write phase. During the read phase, a
transaction can read from the database and write to its own local memory. This write
operation will be referred as a prewrite operation. Before the transaction may perform a
reading, it must obtain the read-lock on the data object it is interested in. To perform a write
(prewrite) operation in its local memory, the transaction also has to obtain the write-lock on
the data object. The read and prewrite operations can be done at any moment during the read
phase.

After the transaction is completed, previous to writing the results in the database, it has to
wait in the wait phase. When its turn has been granted, the process shifts to the write phase
and downloads all the prewrite objects into the database.

The protocol with priorities is based on the principle that higher priority transactions should
be completed before lower ones. If two transactions conflict, the higher priority transaction

'ShOll_Id precede the lower priority transaction.
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Agentl ; write lock
write a value
Agent2 a
Agentd
-
Time

Fig. 5. Write lock example.

Depending on the priority and the order of the transactions, several possible conflicts can be
found when different agents access to the same data (slot).

& Several read operations: all of them are granted.

e Several write operations: all of them are granted. The deduction time of each agent
determines the final temporal ordering. Fig. 5 shows how three different tasks (agents) want
to write on the same data and ask for a write lock that is granted by the KDM. Assuming t0,
t1 and t2, as the begin time of the value, each write is performed in the local memory. In the
write phase, values are written into the global memory. Using temporal attributes of data,
the KDM maintains the coherence of deductions. The value evolution is shown in Fig. 6.

e A read operation before a write operation of a higher priority agent: in this case the less
important task is aborted if it is in the execution (read phase). If it is in the wait phase, the
write lock is delayed until it finishes.

e A write operation before a read operation of a higher priority agent: in this case the less
important task is adjusted (wait phase) to ensure the coherence during the higher priority
agent execution.

® Other cases in the serialization (first higher agents and then lower ones) are not considered
due to the scheduling policy and the assumption about non input/output blocking of agents.

5.2. KDM-agent communication

Rule based agents and real-time tasks work with important differences with respect to
resource management. In this case, REAKT agents work with first order rules, so they require
reading all instances they are interested in. A large amount of data should be locked in the

before t, | X |
at ty | X i a |
at ¢, | X [ a | b i
at ts | x jcja | b l

Fig. 6. Evolution of slot values.
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agent initialization. But not all these data will satisfy rules, only a small number of them
(optimistic approach) will do. Indeed, only current values that match 1HS of a rule should be
locked. Therefore, it is convenient to provide two kinds of read operations:

1. Without lock: it is used in the agent initialization; KDM sends all required slot values to the
interested agents. When a value is updated in the KDM, a message should be sent to all
interested agents which have not applied a locking on this slot.

2. With lock: the concrete slot value is involved in a rule that has already been accomplished.
Before firing the rule, the agent must inform the KDM of its interest in a read lock on that
slot.

The system reactivity with respect to an agent decreases as long as the agent is granted
locking operations on the slots. Resources should be locked when they are needed. A rule
requires that the system lock a value in either of these two cases:

1. a single pattern in the LHS of a rule is satisfied. When this occurs it means there exists a
matching of the pattern to a temporal value (either acquired from the external world or
deduced by the application). In this case the temporal value matching the pattern should be
locked.

2. all the patterns in the LHS of a rule are satisfied, thus applying one lock of all instanced
slots.

The second choice seems more adequate because only required slots are locked in a
minimum of time. Since all nodes to be modified are already known in a rule, it would be
possible to perform a write lock at the same time as a read lock. A description of the relation
and queries between an agent and the KDM is shown in Fig. 7.

At the initialization, each agent receives the values of all the slots it is interested in. As soon
as a slot value is updated into the KDM and no read lock has been requested by the agent, it
is sent to all agents in the same condition. When a LHS of a rule is satisfied, slot values in the

KDM message to update
unlocked gbiects

Read operation without lock  [& o e
{} Agent initialization l Wait phase

@ Read and write lock. 7

Agent execution: level Commit phase

LHS completed

Fig. 7. KDM/agent communication.
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LHS are read-tocked while slots in the right hand side are write-locked. At the end of the
commit phase all locks are released.

6. Example application: The tank scenario

The proposed scenario (Fig. 8) is an academic example application to illustrate the
functionalities of the REAKT toolkit. Many of the physical aspects have been obviated in
order to get a comprehensible scenario and focus on the relevant issues explained in the

} paper.

® The scenario is composed of two tanks connected through a valve. Initially both tanks are
empty. Process starts by filling Tankl, warming up the water and filtering the liquid to
Tank2 which in turn will supply the treated water to a chemical process. A kiln associated to
Tankl is in charge of warming up the water.

Water is provided to Tank1 whose maximum capacity is 500 liters. The kiln is permanent-
ly working at a constant temperature but water temperature varies as long as new input of
water is poured in Tankl. There is a sensor attached to the connect-valve to find out the
time at which 250 liters of water at approximately 100° can be found. Notice that the
temperature of the water in the tank gets colder when new streams are entered in Tankl
through the inp-valve.

The connect-valve is programmed to open during two time units (from here on, time
unit = sec) in order to let the 250 liters pass to Tank2. Once the water is in Tank2 the
out-valve will flow 200 liters to the chemical process; volume in Tank2 must never drop
below 50 liters.

Inp-valve

Tankl —

ﬁ Kiln

Connect-valve

ﬁ Tank?

Chemical Process

Qut-valve

Fig. 8. The tank scenario.
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The kiln takes around 2 time units to warm up the first 100 liters poured in Tankl. Since
the following inputs of water will be mixed with warm water, the kiln will take different
times to warm up the whole contents of the tank. This will depend on the amount and the
temperature of the water contained in the tank, the flow of water falling in Tankl etc.

# The normal behavior of the process is as follows:

— Initially both tanks are empty

— Open inp-valve to fill Tankl with water

— Tank1 begins filling with 500 liters (4 sec)

— At the same time, the kiln begins warming up the water at =~100° (6 sec: this duration
comprises the 4 sec of filling the Tank)

— Close inp-valve when water flow has stopped

—~ Let the kiln warm up the whole volume of water (up to 6 sec for 500 liters).

— Open connect-valve when there are 250 1. at =100°. In case water is still being poured in
Tankl1, close inp-valve before opening connect-valve

- Emptying Tankl and Filling Tank2 (250 1. approx. in 2 sec)

— Close connect-valve

— Open inp-valve to fill Tank1 again with water (Tank1 fills up to 500 liters: input flow =250
1. =2 sec)

— At the same time open out-valve (supply water from Tank?2 to the chemical process)

— Kiln warms up the water. (6 sec for 500 1.)

— Open connect-valve when there are 250 1. at =100°

e For the sake of simplicity the example application has been simplified and some details have
been omitted. In a real process we can also find control loops for the overflow in Tankl and
Tank? as well as a control procedure to ensure the kiln temperature always ranges over the
correct values.

® We are now given the following situation:

— Tank! was initially filled with 500 liters and everything proceed as stated above.

— Second time, volume in Tank1 did not reach 500 liters but only 400 liters (the water flow
input was not the expected one). The kiln took 4 seconds to warm up the water. The
connect-valve worked properly and again 250 liters were poured in Tank2 in 2 sec.

— Next time, input flow in Tankl has also decreased in 100 liters. The KDM registers the
different values the water-level in Tankl has taken on at different times. From this
knowledge we can infer how the volume in Tankl will evolve. The goal is to predict and
advance the next and following states in the process in order to propose actions in case a
fault is detected in the process (either volume in Tank1 does not reach 250 1. or volume in
Tank2 drops below 50 1.).

® Input variables in the process are read through sensors and they stand for the data acquired

.:-_frorn the external world. These values are then communicated to the KDM. In our example
..-_.t__he_se variables are:
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— water-level in Tankl. The KDM is informed about the level in Tankl at each time the
inp-valve is closed, that is: |
— at the time Tank1 has reached 500 1. if everything evolves normally or
~ when the water flow has stopped or
Under normal conditions, the KDM will receive this information within 4 sec the first time
and every 6 sec for the successive times.

— water-level in Tank2. The KDM is informed about the level in Tank?2 at each time the
connect-valve is closed. This means that the expected volume in Tank2 will be 250 1. every
8 sec under normal conditions.

— water-temperature in Tank1. The water temperature varies as long as water is introduced
in the tank. The KDM is informed about the temperature at the same time the level is

read and when the required quantity of water has reached 100° in order to open the
connect-valve,

L B T

® Notice the difference between the observable values (water-level and temperature) and
non-observable values (connect-valve opening, closing ...). The latter are directly
governed by the controlling system (i.e. the REAKT application) whereas the behavior of
the observable values is given by the controlled system (e.g. the industrial plant; in our case
the scenario composed of the two tanks, the valves, the kiln etc.) :

® Following we show the most relevant slots in each of the objects in the application. For the
sake of simplicity the kiln is not represented as an object. Qur choice is to state the kiln task
(i.e. warming up the water) as a slot named ‘water-temperature’ in the class TANK.

CLASS TANK: be
Tankl, Tank2: th
— water-level {temporal slot which takes on a numeric vatue} th
— water-temperature {temporal slot which takes on a numeric value} tir

—associated-alarm {all tanks have an associated alarm. This static slot keeps the alarm . ta
identifier}

—name {static slot for the name of the tank}

CLASS ALARM:
Alarm-Tank?2:

—status: {Values for this temporal slot are ‘ON’, ‘OFF’}

CLASS VALVE:

Connect-valve:
— status {temporal slot with values ‘OPEN’, ‘CLOSED’} S
~ input-tank {static slot to store the input tank identifier #Tank1} o
~ output tank {static slot to store the output tank identifier #Tank?2} :

There exists two agents: the first one performs the control of TANKI (water-level, kiln
temperature, process of warming up the water) and second’s agent task is to ensure th

optimal water level in TANK2. First agent is only interested in data about Tank1 and Agent2
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is interested in both Tankl and Tank2 as many of the deductions for Tank2 depend on
knowledge about Tankl.

Rules for the first agent are:

R1: R1 shows the process behavior under normal conditions. Once Tank1 contains at least 250
1. at 100° the connect-valve is open and a prediction on the volume of Tank2 is done. The
prediction is used to confirm that everything worked properly: the connect-valve was open for
two seconds and 250 1. of water were poured in Tank2.

(((in-class 7Tk TANK
(when (?Tk water-level Twat-lev))
(=="7wat-level 250)
(when (?Tk ternperature Ttemp))
(>="temp 100°%))

(in-class ?Vi VALVE

(input-tank ?Tk-inp)
(output-tank ?Tk-out)
(=7Tk ?Tk-inp)))

N

(put-value 7V1 status OPEN)

(predict-value 7Tk-out water-level 250 (begin 1 3))

;; temporal slot
1, condition on the slot value
;; temporal slot
;; condition on the slot value

R2: R2 verifies a possible malfunction in the system. To do that, R2 makes a comparison
between the two last past temporal values and the current value of the water-level in Tank1. If
the level has been decreasing at each time (i.e. there exists a total order relation between the
three values), the KDM performs a prediction of the volume in Tankl at the next instant of
time. Function ‘evolution’ returns the estimated value. The temporal interval is set by the user
taking into account that Tank1 will empty 250 1. within a short period of time.

{(in-class 7Tk TANK
(name TANKI)
(past-value (?Tk water-level ?wat-levl 7Tbegl ?endl))
(past-value (?Tk water-level Twat-lev2Z 7beg2 7end2))
(when (?Tk water-level Twat-lev3))
(>="7wat-lev3 250)
(temporal-test (?beg2 after ?begl))
(<?wat-levl ?wat-lev2 ?wat-lev3))
3
(predict-value 7Tk water-level (evolution ?wat-levl ?wat-lev2 ?wat-lev3)
(begin 4 6)(end 10))

R.3= R3 makes the valve to close when a volume lower than 250 liters is detected in Tankl.
nce ti_le new level for Tank1 is still a prediction, the action of firing the rule is a dependent
re§1§tion, i.e. as soon as the prediction is confirmed the valve will be closed. The valve may
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happen to be already closed when the LHS prediction is fulfilled. But in case the valve were
open it would be closed immediately. R3 determines the closing of the connect-valve under
abnormal conditions.

(((in-class 7Tk TANK
(when (7Tk water-level Twat-lev))
(<?wat-lev 250)
{(name TANK1))

(in-class ?7V1 VALVE

(input-tank ?Tk-inp)
(=7Tk ?Tk-inp)))

—_—

(put-value ?V1 status CLOSED)

Second agent is in charge of following the evolution of Tank2. Since the behavior of Tank2
is linked to the evolution of Tankl, Agent2 will be interested in data for both tanks.

R4: The same as for R1, R4 states the facts that should happen in the application under
normal conditions. When Tank?2 is filled with 250 L. the connect-valve is closed. This implies
that both the inp-valve and out-valve will open to start the process again (the latter statements
are omitted; only the connect-valve is managed in the example). R4 stands for the normal
closing of the connect-valve.

(((in-class ?Tk TANK
(name TANK2)
(when (?Tk water-level ?wat-lev))
(>="7wat-lev 250))

(in-class 7V1 VALVE

(output-tank ?Tk-out)
(=7Tk 7Tk-out)))

>

(put-vatue ?V1 status CLOSED)

RS: RS checks the water-level in TANK2. In order to control the level never drops below
50°C. in Tank2, Agent2 performs a checking on those predictions that point out a possible fall
in the volume of Tank1. If the volume in Tank1 is predicted not to reach the necessary 250 1.
at any point and that value is estimated to last 5 or more sec, Tank2 will run out of water very
rapidly. Consequently, the alarm associated to Tank2 is planned to be fired as soon as the
system is informed about such a possibility.

(in-class ?Tk2 TANK
(name ?7Tk2 TANK2)
(associated-alarm ?A1)
(in- class 7Tkl TANK

Y
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(name ?Tk1l TANKI)
(when (7Tk1 water-level Twat-lev Tbeg 7end))
(<?wat-lev 250)
(temporal-test (?end after 7begin 5)))
e

(put-value ?Al status ON)

e Fig. 9 shows the process behavior. The starting point is the normal expected evolution in the
system. Tankl fills with 500 liters and the inp-valve is closed at that moment. The KDM is
informed about the current level and temperature in Tankl. After 6 sec have elapsed, the
connect-valve is open as the sensor attached to the valve detects the water has reached the
correct temperature. At this time the KDM is informed about the new water temperature.

——— CV: C t-val
Water-level in Fankl and Tank? Tanki crmeTvAYe

IV: inp-valve
s TaNKZ P

o OV: Cut-valve

Close IV
Water-flow 510p 1058 OV Close CV
Open CV Open CV Cpen CV
¢ * Close CV

Fill Tank! + + &

Fitl Tankl +
Warming up Fidt Tankl +

Warmiing up

Empty
ey, Empty

il

v

6 sec 2 sec 4 sec 2 sec 3sec 2 sec

Water-temperature in Fankl

120° 4
160° v

50° 4

\{

KDM values
Tankl-level
TankZ-ievel
Kiln-ternp
Valve-status e masirang LOS
Alarm-status CLOSED SLOSED * ON

Current values
Predictions
ETEOE Dependent-predictions

Fig. 9. Process behavior.
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R1 is fired and volume in Tank? is predicted to be 250 liters. The KDM is informed when
Tank? contains 250 1. (prediction fulfilled) and the connect-valve is closed at that time (R4).

® Next time the KDM is informed about 400 1. in Tank1 and a temperature of 75°C yet. When
the water is enough warm, the connect-valve is open and liquid is poured in Tank2. The
connect-valve is closed again. The process goes on and at the third input of water in Tankl
the system checks the slope in the water-level of Tank1 is decreasing (R2 is fired). Since the
new volume is estimated not to reach 250 1. the valve is planned to close at the same time
(R3).

® Agent! then commits its conclusions and Agent2 is then aware of a prediction on the level
of Tankl. R5 is then fired taking into account that the level in Tankl is estimated to be
below 250 1. for a period of at least 5 sec. An alarm is planned to ring at the same time that
the new value for the level of Tankl is calculated.

e At this time the system is ready to assist a possible malfunction in the system. In case the
prediction on the water level of Tankl is not satisfied (i.e. the flow of water increases and
Tank1 is filled again with 500 liters) all derivations from the old fact are deleted.

Two important features in the system are remarkable:

® Rules are also fired on future values. This functionality allows to anticipate changes in the
world and plan properly actions in accordance. In this way we can dispose of a picture of the
expected future and new inputs are only used to confirm the predicted changes (rules are not
fired again since the reasoning process was already done at an earlier time).

® The multiple access protocol permits agents to work with more reliable information. Notice
in the example that Agent2 does not execute until Agentl downloads all the changes in the
KDM. Let’s suppose for instance that the prediction on the water-level in Tank1 is deleted
while Agentl is still in execution. This prediction would not be then communicated to the
KDM and Agent2 would not reason about; otherwise Agent2 would be reasoning with a
false prediction.

7. Conclusions

In this paper, a temporal blackboard for a multi-agent world has been presented. Temporal
information is associated to the temporal attributes of stored objects using a model based on
time points. The proposed model permits us to represent a great number of situations
including temporal imprecision. In order to have efficient methods to be applied under time
constraints, past facts are stored with respect to an absolute clock and future facts are stored
using a graph when it is not otherwise possible due to the fact dependencies. Moreover, a
proposal for multiple access and coherence management has been described in this paper. The
following issues can be considered in the protocols: the lowest granularity level is at the slot
level, concurrence control and coherence are managed. The method proposed is appropriate
for working with agents as the timing constraints of agents are met as much as possible, and
the protocol allows working with agents when no computation time or resources are known in -
advance. '
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The proposed architecture is the basis of the REAKT toolkit, a software environment for
the development and production of real-time knowledge-based systems, which is being used in
particular to develop an on-line alarm management application installed in a large oil refinery
in Italy. The main goal of the present work is to illustrate the adaptation of a temporal
blackboard to meet the requirements of real-time knowledge-based systems: in particular it
provides functionalities allowing continuous operation and data input handling, efficient and
powerful knowledge-based reasoning and temporal reasoning.
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