Decomposition of planning problems

Laura Sebastia, Eva, Onaindia and
Eliseo Marzal

Technical University of Valencia,
Camino de Vera s/n, 46022, Valencia, Spain
E-mail: {Istarin, onaindia, emarzal} @dsic.upv.es

The ability to decompose a problem into manageable
sub-components is a necessity in complex problem-
solving tasks. In planning, the application of a divide-
and-conquer methodology is known as planning decom-
position. This technique consists of the following: de-
composing a problem into smaller components (sub-
problems), solving these subproblems individually, and
then combining the obtained solutions. The success
of this technique is subject to the interactions that
may appear between actions from solutions for differ-
ent subproblems.

In this paper, we present a novel technique, STel La,
to overcome the inherent difficulties in planning de-
composition. This technique partitions a planning
problem in such a way that its subproblems can then
be solved separately (either sequentially or concur-
rently) and their solutions can be easily combined. The
key issue is that interactions among goals are used
to come up with the problem decomposition rather
than solving them once the problem is decomposed.
This approach proves to be very beneficial with respect
to other decomposition methods and state-of-the-art
planners.

Keywords: planning, problem decomposition

1. Introduction

Classical AI Planning has experienced great ad-
vances over the last few years as search strategies
become more and more efficient. Techniques like
graph analysis ([4],[33]), local search ([1],[20]) or
heuristic search ([5],[23],[38]) are aimed at focus-
ing only on the most relevant parts of the search
space for the planning problem.

Separating a problem into different parts (divide-
and-conguer methodology) has been widely used
in logic and mathematical proofs, modular pro-
gram design, etc. The field of AI planning also

AT Communications
ISSN 0921-7126, IOS Press. All rights reserved

has its counterpart, known as planning decomposi-
tion. This technique consists of the following steps:
decomposing a problem into smaller components
(subproblems), solving these subproblems individ-
ually, and then combining the obtained solutions.
Planning decomposition offers several advantanges
such as:

1) The obtained subproblems are much simpler
than the original problem and are therefore
easier to solve. In general, the process of ex-
ploring the search space of all individual sub-
problems is much less costly than exploring
the whole space of the original problem.

2) It is not necessary to design new planning
approaches to solve a decomposed problem;
the same techniques used to solve a complete
problem can be re-used to solve the subprob-
lems that result from the decomposition.

Planning decomposition relies on three funda-
ments: a) the principles by which to divide the
problem into different subproblems, b) the resolu-
tion process used to solve each subproblem indi-
vidually and c) the technique used to combine the
obtained solutions. The first item is the crucial is-
sue as it determines the efficiency of the resolution
process and the complexity of the technique for
plan combination. This complexity is greatly de-
termined by the interactions that may emerge be-
tween actions from the solutions for different sub-
problems. We can distinguish between negative in-
teractions (when achieving a fact deletes other nec-
essary facts) and positive interactions (when one
action helps achieve several necessary facts).

It is clear that negative interactions among the
different subplans involve a great complexity in the
process of plan combination. Conflicts must be de-
tected and repaired, and this task may make the
plan combination process more costly than solving
the original problem itself. Therefore, it is impor-
tant to come up with a decomposition technique
that addresses this aspect. Positive interactions di-
rectly affect the solution quality. Although each
subproblem aims at solving its particular goal(s)

depending on the decomposition technique used,
parts of the subplans might overlap; i.e., the same
set of actions may solve the same subgoals in dif-
ferent subplans. This is also an important aspect
that must be considered in order to avoid repeat-
ing the same computation.

Planning decomposition has not been widely
used to solve planning problems due to the diffi-
culty of finding a ”good” decomposition that leads
to obtaining a better performance with respect
to solving a non-partitioned problem. As stated
above, it is important to choose a problem parti-
tion that involves the lowest possible number of
conflicts and takes into account the positive inter-
actions among the actions of different subplans.
This division can be provided by the domain en-
gineer (as in HTN planning -[8],[36],[42]-), or an
automatic process to obtain a problem decomposi-
tion can be used [44]. The latter requires an anal-
ysis of the domain and problem structure in or-
der to identify which parts of the problem are in-
dependent (to a certain degree) from each other.
This brings us again to the fact that the decom-
position method must provide efficient partition
criteria in order to achieve a low-cost process for
plan combination. It is also important to note that
when planning decomposition is used, the global
view of the problem is lost, and this may lead to
a degradation of the plan quality.

However, one of the most important gains from
using an appropriate decomposition technique is
the possibility of solving subproblems concur-
rently. If subproblems are fairly independent; i.e.,
the resolution of a subproblem does not depend on
the result of executing other subproblems, we can
then consider a concurrent resolution rather than
a sequential one, which may result in very great
time savings.

In this paper, we present a new technique to
partition planning problems aimed at mitigating
the inherent shortcomings in planning decompo-
sition. Our technique is able to automatically ex-
tract the different subproblems easily. These sub-
problems are independent enough so that 1) we
can apply a concurrent resolution, 2) we can com-
bine the solutions in such a way that the number
of conflicts is very low and 3) we can use any exist-
ing planner to solve the subproblems. At the same
time, our technique achieves plans with a similar
(or even better) quality than the solution to the
original problem.

This paper is organized as follows. Section 2
briefly describes some other decomposition tech-
niques. Section 3 introduces the process for decom-
posing a planning problem and how the solutions
are combined when the obtained subproblems are
solved sequentially. Section 4 explains how these
subproblems can be solved concurrently. Both Sec-
tion 3 and Section 4 present some experiments that
compare our decomposition technique with other
planning systems that use a similar decomposition
approach. They also show how our decomposition
technique works when using different planners to
solve the obtained subproblems. Finally, Section
5 summarizes the decomposition technique intro-
duced in this paper and highlights future work.

2. Related work

In this section, we summarize some previous de-
composition approaches in the literature. First, we
introduce some notations. A state s is a set of log-
ical facts. A planning problem P = <A,I,g> is a
triple where:

— A is the set of actions that can be applied
in the domain. Each action a is a triple a =
(pre(a),add(a),del(a)), where pre(a) is the
set of action’s preconditions, add(a) is its add
list, and del(a) is its delete list, each of which
constitutes a set of facts.

— 7 (initial state) and G (goal state) are sets of
facts.

Given an action a and a state s, a is said to be
applicable in s when pre(a) € s and the result of
applying a to s is:

Result(s,a) = s U add(a) — del(a)

A planis an action sequence P = (a1, as, . .. ,a,)
A*. In case P is applicable in the initial state Z of a
planning problem, it defines the following resulting
state:

Result(Z,P) = Result(Result(...(Result(

Result(Z,a1),az),...),an-1),Gp)

A solution plan for a problem P = <A,I, g) is

a plan P such that G € Result(Z,P).

The remainder of this section describes the ex-
isting decomposition approaches, which can be
classified according to two features:

— Method of decomposition:

* automatic decomposition. This technique
obtains information by analysing the do-
main and the problem structure and uses
this information to achieve a problem de-
composition.

* manual decomposition. This is the type of
decomposition used when an automatic de-
composition is difficult to apply (for exam-
ple, in aerospace applications [9], military
systems [13], etc.). This problem decompo-
sition is performed by the domain engineer,
who mainly studies the interaction between
the different subproblems.

— Type of resolution:

* sequential resolution. The resolution of a
subproblem depends on the resolution of
other subproblems. Therefore, each sub-
problem is solved after all those it depends
on are solved.

x concurrent resolution (including multia-
gent planning). In this case, we find a dis-
tributed planning environment that can be
defined from two different points of view:

1. A planning system is said to be dis-
tributed when the subproblems obtained
from a decomposition are independent
enough to be solved concurrently.

2. Distributed planning is the problem of
finding a plan that helps a set of agents
in a given initial configuration to collec-
tively satisfy their goals [35].

By using distributed planning, we can ben-
efit from the efficiency of parallel processing
and the robustness of distributed systems.
However, only problems with any of the fol-
lowing features can be solved by distributed
planning:

% inherent distributed problems, for exam-
ple, those located in different places or
distributed due to privacy and security
reasons

* problems that can be decomposed into
subproblems with limited interactions

* problems where different agents need an
independent but coordinated plan, etc.

In accordance with the above classification, Ta-
ble 1 shows some planning approaches that follow
a resolution scheme based on problem decompo-

sition. Some of these techniques are explained in
detail below. We focus on those approaches that
are based on an automatic decomposition with a
sequential or concurrent type of resolution, except
those that have been developed to work in multi-
agent environments, which are briefly summarized
in Table 2.

The traditional view in problem decomposi-
tion consists in partitioning a goal set G in dis-
joint subsets G;, such that G = |JG;. In this ap-
proach, presented in [44], a plan P; to solve each
P; = (A,7,G;) is computed, and then plans are
reassembled for an overall solution. In Korf’s anal-
ysis [31], he discusses computational complexity is-
sues that are related to decomposing a compound
goal into subgoals in forward-chaining, total-order
planners. His conclusion is that, in the case that all
subgoals are completely independent of each other,
decomposition cuts down both the branching fac-
tor and the depth of the search, leading to an ex-
ponential amount of savings in planning time. Un-
fortunately, this is not always the case. Therefore,
in the process of combining plans, hard conflicts
among subplans may arise, which are often caused
by actions that share the same resources.

Following this traditional approach, Iwen and
Mali ([25], [26]) developed a technique that builds
interaction graphs to partition the goal set G. The
idea is to link literals in the initial situation, Z, and
the goal set, G, if they refer to the same object in
the domain. This draws a bipartite graph, called
an interaction graph. Then, G is divided into two
sets, where each set corresponds to a group of con-
nected components in the interaction graph. The
two obtained subproblems are then solved by using
any planner (in [25], FF, Graphplan, and HSP are
used). The plans obtained are then combined and
conflicts that may arise are solved to obtain the
solution for the original problem. The experiments
indicate important benefits with respect to the ex-
ecution time. The most important difference with
the traditional approach is that, in this case, the
problem is always divided into two subproblems.

A different type of problem solving is planning
with abstraction hierarchies. Under this approach,
a domain is broken down into several levels on a hi-
erarchy. The most critical part of a planning prob-
lem is represented at the highest level, and a so-
lution obtained at the lowest or concrete level is a
solution to the original problem. The abstraction
paradigm was first used in ABSTRIPS [39] and was

Type of Resolution

decomposition Sequential Concurrent/Multiagent

Abstraction hierarchies Traditional
Automatic Subproblem type Disjunctive planning
Goals ordering Partial global planning
Subgoals ordering Local planning
User decomposition HTN Distributed HTN
Table 1
Planning systems using problem decomposition
References
Description and applications
Disjunctive The search space is partitioned and each agent [27]
planning explores a part of this space and works on the

complete plan.

Partial

global it stores its own partial view of other agents’ plans.

planning

Each agent mantains a partial global plan, where

Each agent’s plan contains a set of goals, a long-term

[14], [10]
Cooperative information [11]
Cooperative robots [6]

strategy, a short-term strategy, and a set of

predictions and statistics to compute heuristics

to guide the search.

Local Problem decomposition is based on local interaction

planning

Collage system [32]

regions so that each region is assigned to a different

agent, which computes its plan independently and

communicates to the other agents to avoid interactions.

An interaction region is a set of requirements and

a set of operators that are related in some way.

Distributed

HTN each goal. Each agent solves its goals by applying

planning

to include a node that represents a call to another

The user specifies which agent is in charge of solving

a HTN algorithm. Plans representation is extended

Distributed NOAH [7]
Distributed SIPE-2 [12]
NASA systems [9]
Military applications [13]

agent’s plan and some primitive actions to

synchronize multiagent execution.

Table 2
Short description of decomposition techniques in a multiagent environment

later extended in Knoblock’s ALPINE [28] and Bac-
chus and Yang’s HIPOINT [3]. Despite the similar-
ity in the general framework, major differences re-
main between abstraction hierarchies and the tra-
ditional problem-domain decomposition. First, in
decomposition planning, the planning process oc-
curs concurrently instead of sequentially as dic-

tated by an abstraction hierarchy. A second dif-
ference, which was pointed out by Lansky [32], is
that in obtaining the abstraction hierarchy used by
ALPINE and HIPOINT, a requirement is enforced
such that no interferences between operators at
different levels of abstraction exist. This require-
ment is relaxed in decomposition planning as in-

teractions between groups of goals are allowed.

In large complex planning problems, it is likely
to identify different types of subproblems. A type
of decomposition for these problems is based on
the concept of using specialised solvers for each
subproblem type as it is more efficient to use dif-
ferent planning techniques depending on the type
of subproblem to solve. The motivation for this
is that many hard specialised problems have been
the subject of research themselves and good solu-
tions exist for them. In contrast, while a generic
problem-solving technology is very unlikely to
challenge these specialised solutions when they
are applied to these problems. These specialised
problems often appear as subproblems within a
larger planning problem. For example, a prob-
lem that involves transporting components be-
tween locations, constructing complex artifacts
with the components, and then delivering them
to customers can contain the following subprob-
lems: route-planning, resource allocation, job-shop
scheduling, and construction planning. Fach of
these can, to some extent (although not entirely)
be decoupled from the others and solved using spe-
cialised technology.

The REALPLAN [40] planner extracts the resource-

scheduling subproblem to be solved by a spe-
cialised solver. However, in this case, the task of
identifying the subproblems relies on the domain-
engineer, who must understand the characteris-
tics of the subproblems and the restrictions on the
capabilities of the specialised solvers for the de-
composition and the combination of the obtained
subplans to be successful. Unlike REALPLAN, Hy-
brid STAN ([34], [16]) does decompose the problem
according to the subproblem type automatically.
It involves the automatic identification of a set
of subproblems, and the integration of specialized
solvers, one for each identified subproblem, with a
planner in the solution of the complete problem.
A domain analysis tool, such as TIM [15], can be
used to decompose the problem and identify the
presence of such subproblems.

The main advantage of this approach is that
each subproblem can be solved more efficiently;
however, the identification of subproblems is com-
plex for each specific case because slight changes
in the domain may hinder the subproblem detec-
tion. Another inconvenience is the integration be-
tween the planner and the set of specific solvers.
This technique has produced some limited benefits
related to specific domains.

Although planning decomposition in its tradi-
tional view has not been widely exploited, some of
its underlying principles are used in many planning
algorithms. For instance, Koehler and Hoffmann
[29] introduced the technique called GAM (Goal
Agenda Manager), which performs a goal order-
ing. This technique basically consists of ordering
the literals of the top-level goal according to the
notion of reasonable ordering. This notion states
that a pair of goals A and B can be ordered so
that B is achieved before A if it is not possible to
reach a state in which A and B are both true from
a state in which just A is true without having to
temporarily destroy A. In such a situation, it is
reasonable to achieve B before A to avoid unneces-
sary effort. Specifically, a total order is established
between incremental subsets of literals of the top-
level goal G. This way, the problem is decomposed
in the sense that it is possible to plan from the
initial state to the first of these subsets; from the
state reached in the previous step to the second
subset; and so on until the last subset is solved
(which coincides with G). GAM was implemented
as a module of the IPP planner [30], obtaining a
better performance. However, with this decompo-
sition technique, the planning process cannot oc-
cur concurrently because the initial state of a sub-
problem is the resulting state after solving the pre-
vious subproblem (sequential resolution).

More specifically, subgoal ordering is a common
mechanism to obtain problem decomposition. Sub-
goal ordering is part of the planning process it-
self as it helps determine which subgoal (literal)
is more convenient to achieve first. Moreover, the
orderings among subgoals allow the grouping to-
gether of sets of literals that will lead to a problem
partition.

Porteous, Hoffmann and Sebastia ([37], [24])
have developed a decomposition technique based
on the concept of landmark. A landmark is a literal
that must be achieved in any solution plan. These
landmarks are then ordered according to three
types of orders'. As a result, a landmark gener-
ation graph (LGG) is obtained. Each subproblem
results from considering the leaf nodes of the cur-
rent LGG, and when a subtask has been processed,
the LGG is updated by removing the achieved leaf
nodes. The solution plan is formed by concatenat-
ing the subplans obtained from each subproblem.

I These orders will be formally introduced in Section 3.1.

This technique will be further explained in Section
3.4.2.

GRT [38] decomposes the original problem into
subproblems that must be solved sequentially. This
decomposition is based on the definition of XOR
constraints, which define a relationship between
literals. A XOR constraint between two literals is
true in a state if only one of them is true in that
state. Constraints of this type are called invariants
in analysis of domain systems such as TIM [15]
and DISCOPIlan [19]. For example, in the logistics
domain [2], we can define the following XOR re-
lationship: zor (at(z *)(in(z *))(package x); that
is, a package x can only be in one place at the
same time, either in a truck or in an airplane. Once
the XOR constraints are computed, it is possible
to establish orders between the subgoals that must
be reached before satisfying the problem top-level
goals. These subgoals are grouped into ordered in-
termediate goals, which make up the subproblems
to solve sequentially.

A recent planner that uses decomposition plan-
ning and that has shown an impressive perfor-
mance in the last planning competition? is SGPlan
[43]. SGPlan was awarded the first prize as the best
planner at the suboptimal metric temporal track
and was awarded the second prize in the subop-
timal propositional track. It is a good example of
how decomposition techniques can play an impor-
tant role in AI planning. SGPlan partitions a plan-
ning problem into subproblems, orders the sub-
problems according to a sequential resolution of
their subgoals, and finds a feasible plan for each
goal. Using the extended saddle-point condition
[41] and constrained search, new constraints are
enforced to ensure that facts and assignments in
a later subgoal are consistent with those of earlier
subgoals. This technique will be also discussed in
Section 3.4.2.

In this section we have described several ap-
proaches for decomposing planning problems and
how they have been used in different planning
algorithms. In summary, we can say that plan-
ning decomposition has not been widely used due
to the difficulties that arise in combining the ob-
tained subplans when dealing with highly inter-
active goals. However, the SGPlan planner does
make use of this technique as a global problem-
solving technique, and had an excellent perfor-

?http://ipc.icaps-conference.org/, 2004

mance in the last planning competition. In the re-
mainder of the paper, we will present our decom-
position technique for planning problems, and we
will show that our planner outperforms some of the
approaches described above. It also exhibits excel-
lent behaviour thanks to a concurrent resolution
of the planning process, among other features.

3. Decomposition technique

In this section, we describe our decomposition
technique, STelLla, for STRIPS domains. As it
was explained in the previous section, most of
the decomposition techniques find difficulties when
merging the subplans for an overall solution. Our
goal is thus to come up with a decomposition tech-
nique that allows the partitioning of a problem into
a collection of subproblems whose solutions can be
easily combined. In this sense, it is important to
analyse the different sources of conflicts that may
appear when merging the solutions of the subprob-
lems:

— Negative interactions: There is a negative in-
teraction between two actions when the ef-
fect of one action is the negation of another
action’s effect (inconsistent effects), or when
one action deletes the precondition of another
action (interference).

— Positive interactions: There is a positive in-
teraction between two actions when both need
the same precondition and at least one of
them does not remove it; that is, the same
producer action can be used to support the
precondition of both actions.

When combining two subplans, negative inter-
actions may cause conflicts that are repaired by
adding new ordering constraints between interfer-
ing actions or by adding new actions to reachieve
the deleted facts. On the other hand, the combi-
nation of two subplans may lead to a plan with
redundant actions due to positive interactions.

These interactions make the process of combin-
ing subplans difficult. Our objective is to decom-
pose the problem in such a way that these interac-
tions affect the process of plan combination as lit-
tle as possible. Specifically, we perform a chrono-

3The terms “inconsistent effects” and “interference” were
introduced in [4].

logical decomposition of the problem by consider-
ing the intermediate positions that each object in
the domain must reach throughout the execution
of the plan. The subplans obtained for these de-
composed problems will be conflict-free and, there-
fore, the overall plan is achieved by simply con-
catenating the different subplans. Unlike existing
approaches that deal with conflicts at the time of
combining subplans, we use the possible interac-
tions to accomplish the plan decomposition. The
most important feature of our decomposition tech-
nique is that interactions among actions are used
as the basic principle for dividing the problem
rather than considering them to be a source of con-
flicts.

In order to illustrate our approach, we introduce
the example shown in Figure 1, which corresponds
to a problem from the depots domain [17]. This
problem consists in transporting three crates from
their initial locations to their destination by means
of a truck, which is initially at Depot0. A crate
must be held by the hoist at the corresponding
location to load it in the truck or unload it from
the truck. Both Hoist0 and Hoistl can be used to
lift /drop crates in Depot0. Each hoist can only lift
one crate at a time, whereas the truck has unlim-
ited capacity.

Several decomposition approaches can be adopted
to solve this problem as stated in Section 2. For ex-
ample, the problem can be decomposed into three
subproblems, one for each top-level goal. In this
case, each subproblem is solved separately and
then the obtained plans are combined. Plans for
achieving these top-level goals are shown in Fig-
ure 2. A close analysis of these plans reveals that
some conflicts will be found during the plan com-
bination process. First, the same resources (hoists
at each location and the truck) are used to reach
different goals. We also have to take into account
that Crate0 must be dropped onto Pallet2 before
stacking Crate2 onto it. If we do not take this as-
pect into account, the plan for the top-level goal
(on Crate2 Crate0) will be incorrect (as shown in
Figure 2) because Crate2 is not dropped at its final
correct location, which should be DistributorQ in-
stead of Depot0 (where Crate0 is initially located).

These conflicts could be partly avoided if a
chronological decomposition of the problem is con-
sidered, taking into account the intermediate posi-
tions that each object must reach throughout the
execution of the plan. In our example, it can be ob-

served that both Crate0 and Cratel must be inside
Truck0 at some point. Then, TruckO must visit each
of the crate destinations and, finally, the crates
must be placed at their destination pallet (which
must be clear). Figure 3 shows the intermediate
positions that the objects must reach to solve this
problem (we do not know the intermediate posi-
tions for Crate2 since we only know that Crate2
must be stacked on Crate0 but we do not have any
information about which distributor). Thus, not
only is a decomposition by goals performed, but a
transversal decomposition is also done, which takes
into account intermediate situations that must be
reached in order to achieve each goal.

Note that we are not calculating a plan for each
subgoal. Instead, we are just decomposing a prob-
lem through the intermediate positions that the
objects must reach. Obviously, this type of decom-
position leads to a sequential resolution, as one
position is reached after the other. For example,
Crate0 cannot be dropped onto Pallet2 unless it has
been previously lifted by Hoist2. However, since
it is possible to establish a partial ordering be-
tween the intermediate positions of different ob-
jects, we can avoid the majority of conflicts that
appear when combining subplans. For instance, we
can state that Crate0 must already be on Pallet2
before Crate2 is stacked onto Crate0 (see arrow in
bold in Figure 3).

We can force some intermediate situations to
be reached before others not only to avoid con-
flicts but also to benefit from positive interactions.
In our example, both Crate0 and Cratel have to
be loaded into the truck at DepotQ in order to
be transported to their final destinations. We will
avoid visiting Depot0Q twice if we state that both
crates must be in TruckQ before it moves from De-
pot0 (see square in bold in Figure 3).

An intermediate position that an object in the
problem will eventually reach throughout the plan
execution can be defined by a fact that must be
true at some state in the plan execution. In the lit-
erature, these facts are commonly known as land-
marks. The work of Hoffmann, Porteous and Se-
bastia [24] is one example. This work also defines
some types of order relationships between these
landmarks, which are used to build a landmark
graph.

The decomposition technique that we describe
in this paper (called STellLa) first studies the
structure of the problem and computes a set of

Hoist0 Hoist1 Hoist2 Hoist3
| n || || |
Crate2
Crate0 Crate1 Crate2 Crate0 Crate1
[Pallet0 | Pallet1 | Pallet2 | Pallet3 | Pallet2] [Pallet3 |
Depot0 Distributor0 Distributor1 Distributor0 Distributor1
o000
Fig. 1. Initial state (left) and goal state (right)
Lift Hoist2 Crate2
Pallet2 Distributor0
.\g' on Crate0 Pallet2
® e 4 s J 4 o

Lift Hoist0 Crate0
Pallet0 Depot0

Load Hoist0 CrateO
TruckO Depot0

Drive TruckO
Depot0 Distributor0

Load Hoist2 Crate2
TruckO Distributor0

Unload Hoist2 Crate0
TruckO Distributor0

Drop Hoist2 Crate0
Pallet2 Distributor0

on Crate1 Pallet3
@ >@

Unload Hoist3 Crate1
TruckO Distributor1

»
>

@

Lift HoistO Crate1
Pallet1 Depot0

Load Hoist0 Crate1
TruckO Depot0

Drive TruckO

Drop Hoist3 Crate1
Depot0 Distributor1

Pallet3 Distributor1

Drive TruckO
Depot0 Distributor0

:\

4

on Crate2 Crate0
d]

Drop Hoist0 Crate2
Crate0 Depot0

< 4 s J

Unload Hoist0 Crate2
TruckO Depot0

Lift Hoist2 Crate2
Pallet2 Distributor0

Load Hoist2 Crate2
TruckO DistributorO

Drive TruckO
DistributorO0 Depot0

Fig. 2. Plans for each top-level goal

clear Pallet2

» in Crate0 TruckO >

{ in Crate1 TruckO }

at TruckO Distributor0

/
h 4

lifting Hoist2 Crate0 ’—+ on Crate0 Pallet2

1

at TruckO Distributor1

lifting Hoist3 Crate1 H on Crate1 Pallet3 ‘

h 4

on Crate2 Crate0

G

Fig. 3. Chronological decomposition of the planning problem

landmarks for each object. These landmarks are
ordered to obtain a landmark graph, in a way sim-
ilar to the one in [24]. The landmark graph is the

basis of the process that is in charge of chronologi-
cally decomposing the original problem. This pro-
cess analyses the landmark graph and finds addi-

tional ordering constraints between landmarks to
avoid conflicts and to benefit from positive inter-
actions. Thus, a collection of sets of landmarks is
built (where each of these sets contains one or more
landmarks) representing an intermediate situation
in the planning problem. These sets are called in-
termediate goals.

Given a planning problem P = (A,7,G), we
obtain a set of subproblems of the form: P; =
(A, IS;_1,IG;), where IG; is an intermediate goal
and I.S; 1 is the state reached after solving the pre-
vious subproblem. In the first subproblem, ISy =
7Z; and in the last subproblem, IG, = G. These
subproblems are solved by any planner to obtain
a plan P; = (a1, ai,...,aij). Solving each of
these subproblems is easier than solving the orig-
inal problem since the search space is vastly re-
duced. Once the solution for each subproblem is
computed, the final solution plan for the original
problem is obtained by simply concatenating the
plans P; above:

'P:'Plo'on,,,o n—IOPn

By using this technique, we avoid the conflicts
that usually appear in a goal decomposition ap-
proach since these conflicts are handled in advance,
when building the set of intermediate goals.

The following sections detail and formalize our
decomposition technique. In Section 3.1, we intro-
duce the concept of landmark and how landmarks
can be ordered to build the landmarks graph. Sec-
tion 3.2 explains how a planning problem is de-
composed through the calculation of the interme-
diate goals. Section 3.3 shows the process of solv-
ing a planning problem decomposed with STelLa;
and Section 3.4 presents the experimental results
comparing the resolution of a decomposed problem
with the resolution of the original problem.

3.1. Detection and ordering of landmarks

The first step in our decomposition technique is
the detection of landmarks for each object in the
planning problem (A4,7Z,G). The work developed
in [37] and [24] goes in this direction. These papers
introduce the definition of landmark and some or-
dering relations between landmarks. STelLLa makes
use of these ordering relations to build more in-
formed and accurate intermediate goals. Actually,
Definitions 1 to 5 are borrowed from [24]. In this
section, we summarize the main concepts about

the theory of landmarks and orders*. We also in-
troduce an improvement that was developed to
find more precise orders.

Definition 1 Given a planning problem <.A, Z,g>,
a literal | is o landmark iff 1 is true at some
point in all solution plans, i.e., if for all P =
(a1,...,an) € A*,G C Result(Z,P) : | €
Result(Z,{a1,...,a;)) for some 0 <i <n.

As mentioned above, it is possible to establish
some orders between landmarks, thereby indicat-
ing which landmarks should be achieved before
others in the plan. Consequently, the result of this
process is a graph where nodes represent land-
marks and edges represent orders between them.

Definition 2 Given a planning problem <A,I,g>
and two literals | and l', there is a necessary or-
der between | and l', denoted as 1 <, l', ifl is a
prerequisite in the immediately preceding state for
achieving I':

I'¢ TANP = (as,...,an
' € Result(Z, (ax,. .., a;
I' ¢ Result(Z,(a1,...,a;)),1 <j<i<mn)

— (I € Result(Z,{ay,...,a;_1)))

A necessary ordering established between [and
I' indicates that [is a prerequisite for I’ only the
first time I’ is achieved in the plan.

We can also establish a reasonable order be-
tween two literals, [and I’, which states that it is
reasonable to achieve [first, because, otherwise, I’
would be achieved twice in the plan. The follow-
ing definitions formalize this notion of reasonable
order.

Definition 3 Given a planning problem (A,Z,G)
and two literals | and I'. | interferes with I' if one
of the following conditions holds:

1. I and ' are inconsistent®;

4The complete theory about landmarks can be found in
[24].

5Two literals are said to be inconsistent when they can-
not simultaneously coexist in the same correct planning
state. We approximate inconsistency by using the function
inconsistent provided by the TIM API[15]. If the function
inconsistent(l,!') returns True, [and !’ are inconsistent, but
if it returns False it is not known if [and [’ are inconsistent
(only that the function failed to prove them to be.

10

2. there is a literal © € (),c4 cada(a) 29d(a)
such that x is inconsistent with l';

3. 1" € Naeatcadd(a) del(a);

4. or there is a landmark x that is inconsistent
with I' such that © <, I.

Definition 4 Given a planning problem (A,Z,G),
and two landmarks | and I'. If | interferes with I,
and there is a set of landmarks Iy, ... 1, such that
li <pliv1,1 <i<n, withl =1, and either

1. I'l,eg, or
2. there is a landmark l, 1 such that I' <,
ln—i—l A ln Sn ln—i—l;

then there is a reasonable ordering between | and
U, denoted as 1 <, .

In a similar way as necessary orders are used to
define reasonable orders, both necessary and rea-
sonable orders are used to define orders of a new
type: the obedient orders.

Definition 5 Given a planning problem (A,Z,G), a
set of necessary and reasonable orders O, and two
landmarks l and l', if | interferes with ', and there
is a set of landmarksly, ... 1, such that (I;,l;11) €
0,1 <i<n, withl =1, and either

1. I'l,€eg, or

2. there is a landmark l,y1 such that I' <,
Int1 A (lnylnt1) € O and i : 1 < i < n
such that there is no action a € A with
l; € add(a) Al € add(a)

then there is an obedient ordering between | and l’,
denoted as 1 <, I'.

Once the landmarks and the necessary orders
between them have been found, definitions 4 and 5
are applied to find the reasonable and obedient or-
ders between these landmarks. The combination of
all these types of orders defines a landmark graph.

Definition 6 A landmark graph (LG) is a graph
(L, E) where L is the set of the extracted land-
marks and E represents the necessary, reason-
able and obedient orders among landmarks together
with the type of order:

(lialjyn) lz Sn lj
E = (li,lj,f’) : l, Sr l]'
(lial.ho) l; <, lj

We represent the existence of an edge between
two landmarks | and l' in the LG as 1 <1'.

Figure 4 shows the LG for the example in Fig-
ure 1. We can observe that there are no landmarks
indicating which hoist must be used to lift Crate0
and Cratel from Pallet0 and Palletl, respectively,
because both Hoist0 and Hoistl can be used. Con-
sequently, the first intermediate position reached
by these crates indicates that they must be in the
truck: (in Crate0 Truck0), (in Cratel Truck0). In
addition, when Crate0 has to be unloaded from
Truck0 at DistributorQ, only Hoist2 can be used and,
therefore, literal (lifting Hoist2 CrateQ) appears as a
landmark. A similar situation occurs with Cratel.

The only landmarks that are related to Crate2
are those from the initial state and the top-level
goals. This occurs because we can achieve (on
Crate2 Crate0) at any depot or distributor and,
therefore, any hoist can be used to drop Crate2
onto Crate0. This lack of information in the goal
description makes the process for landmark extrac-
tion be unable to find more landmarks that are
related to Crate2 such as (lifting Hoist2 Crate2),
which is a literal that must be clearly achieved in
order to clear Pallet2. This is an indication of the
incompleteness of the process for landmark extrac-
tion. However, in this particular case, we can indi-
rectly discover this landmark since (clear Pallet2)
is a landmark which can only be reached if Crate2
is lifted.

Let us give an example of reasonable and obedi-
ent orders. It is obvious that [=(on Crate0 Pallet2)
must be achieved before I’ =(on Crate2 Crate0).
This reasonable order is found as follows: [inter-
feres with I’ because the only action that achieves
[has an add effect ((clear Crate0)), which is incon-
sistent with I’ (condition 2 of Definition 3), and
both I and I’ belong to G (condition 1 of Definition
4). We can establish an obedient order between
I =(lifting Hoist2 Crate0) and !’ =(clear Crate0) in
the following way. [interferes with I’ because they
are inconsistent (condition 1 of Definition 3). As
I <, (on Crate0 Pallet2) <, (on Crate2 Crate0) and
I' <, (on Crate2 Crate0), then we can establish the
obedient order | <, I'.

It is important to note that the information con-
tained in the LG might be incomplete because the
algorithms for finding landmarks and orders do not
guarantee finding either all the possible landmarks
nor all the necessary, reasonable and obedient or-
ders. In addition, the introduction of some reason-
able and obedient orders might produce cycles in
the LG. Unlike necessary orders, reasonable and

on Cratel Palletl

at Cratel Depot0

in Cratel TruckO

available Hoist3
n

n

11

clear Pallet3 n
n on Cratel Pallet3

lifting Hoist3 Cratel

clear Cratel

~ T
-~

at TruckO DepotO

=

n at TruckO Distributor1

at Crate0 Depot0

2t TruckO Distributor0y*— — — — — — — — = 7

n

available Hoist2

clear Pallet2

on Crate(PalletO n

in CrateO TruckO

r = =

n

clear Crate0
r on Crate2 Crate0

on Crate(Pallet2

on Crate2 Pallet2

at Crate2 DistributorQ

Fig. 4. The landmark graph. Literals from the initial state are represented with boxes; necessary orders are indicated by solid
lines; reasonable orders are indicated by dashed lines; and obedient orders are indicated by dotted lines.

obedient orders work as recommendations about
which literals would better be achieved first and
they do not impose a restriction on how literals
should be ordered. This might give rise to a sit-
uation where a literal [is ordered before another
literal I, even when [is reachable from I'. For in-
stance, Figure 4 contains a cycle formed by liter-
als {(clear Crate0), (in Crate0 Truck0), (at Truck0
Distributor0), (lifting Hoist2 Crate0)}, as a conse-
quence of the existence of an obedient order be-
tween (lifting Hoist2 Crate0) and (clear Crate0) and
also a path from (clear CrateQ) to (lifting Hoist2
Crate0). A cycle indicates that a landmark will ap-
pear more than once in the plan®. In this example,
the cycle represents that the literal (clear Crate0)
will appear twice: the first time in the initial state,
and the second time when Crate0 is dropped onto
Pallet2.

6The appearance of cycles in the LG and their meaning
will be discussed in the following section.

When the landmark extraction process de-
scribed in [24] is applied, the literals (at Truck0
Distributor0) and (at Truck0 Distributorl) have (at
TruckO Depot0) (the initial location of the truck)
as a predecessor node (lines in bold in Figure 4
represent this relationship). This would imply that
to reach (at TruckQ Distributor0) and (at TruckO
Distributorl), the origin of TruckO must be Depot0,
which is only true the first time the truck moves.
Therefore, the process described in [24] obtains in-
correct necessary orders. In order to overcome this
drawback, we have implemented a postprocessing
to remove these orders, which is executed right af-
ter having computed the necessary orders (that
is, before calculating the reasonable and obedient
orders). It basically consists in deleting those nec-
essary orders (,1") such that I’ can be reached by
using an action that does not require [as a precon-
dition. This is why the literals (at TruckO Distribu-
tor0) and (at TruckO Distributorl) do not have any
predecessor landmark in the graph (lines in bold
no longer form part of the LG).

12
3.2. Intermediate goals

This section describes how a problem is par-
titioned when following our decomposition tech-
nique. STelLLa performs a chronological decompo-
sition by taking into account the following two as-
pects:

1. the intermediate positions that each object in
the domain must reach throughout the plan
execution

2. the negative interactions that may appear be-
tween the actions that solve each top-level
goal.

This information is captured by the LG. Inter-
mediate positions of objects are represented by
landmarks, while negative interactions are denoted
by reasonable and obedient orders. For example,
the reasonable order between (in CrateQ TruckQ)
and (at TruckO DistributorQ) states that the action
that achieves the second landmark deletes a literal
required by the action that achieves the first land-
mark. All this information is reflected in the LG
and is used as a basis in our decomposition tech-
nique. Once we have the LG for a given problem,
STelLa analyses its structure to compute a set of
sequential intermediate goals.

Definition 7 An intermediate goal (IG) is a set of
landmarks from the corresponding LG(L, E) that
fulfil the following properties:

— Consistency Property. All the literals in an
IG must be consistent with each other:

VI,I' € IG : —inconsistent(l,1")

— Ordering Property. A literal [belongs to an
IG if and only if all its predecessor nodes in
the LG(L, E) have been visited’ before I:
VielIG:Vl' e L:I'<I—>l'elIGjNj<i

The IGs are built by going through the LG and
by grouping together those landmarks that fulfil
the Consistency and Ordering properties. Once the
IGs have been computed, we build a set of sub-
problems of the form P; = (A4,1S;_1,IG;), where
IG; is an IG, and IS;_; is the state reached af-
ter solving the previous subproblem. The IG is the
goal set of a subproblem; the Consistency Prop-

7A literal is said to have been visited if it has been in-
cluded in a previous IG.

erty must be satisfied for all the IGs to ensure that
each of them will be a correct goal set. Also, the
Ordering Property forces building the IGs accord-
ing to the orders in the LG. These orders reflect
two types of relationships between two landmarks [
and I': a necessary order represents that to achieve
', l must be true in the previous state, while rea-
sonable and obedient orders denote a negative in-
teraction between the actions that achieve both
landmarks. Therefore, by obeying the orders in the
LG, we will be able to build more accurate IGs.
All the literals in the LG will eventually be in-
cluded in an IG and, consequently, they will be
achieved at some point of the plan. For this rea-
son, the LG must only contain literals labeled as
landmarks and not other literals since this may af-
fect the completeness of the process and also the
quality of the solution. These two factors can also
be affected by the order in which landmarks are
included in the IGs. Let us recall that the LG is in-
complete because the process of landmark extrac-
tion does not obtain all the possible orders between
landmarks. This implies that, when two landmarks
I and I' are not ordered, we can generate three dif-
ferent decompositions: in the first one, [is included
in IG; and I in IG}, such that ¢ < j; in the second
solution, ! belongs to IG; and ' to IG;; and in
the last one [and I’ belong to the same IG;. In
the first case, I would be achieved before I’ in the
plan and in the second case, I’ would be achieved
before I. In the third case, it is the planner that
takes the decision about which literal to achieve
first. This may affect completeness (if we deal with
non-reversible domains [22]) as well as the solution
quality. For this reason, we introduce some helpful
additional constraints to build more accurate IGs
and obtain a more refined problem decomposition.
These additional constraints are computed at
the same time the IGs are being built. The objec-
tive is to establish some priority criteria to pro-
mote some literals over others when inconsisten-
cies among landmarks are found. These additional
constraints capture and deal with the negative in-
terferences that have not been detected during the
search for orders among landmarks. We call these
constraints active interferences. More particularly,
the aim of active interferences is to make the nec-
essary modifications to the IGs so as to facilitate
the fulfilment of the Consistency and Ordering
properties. We distinguish four cases (depicted in
Figure 5). The first case provides support for guar-

anteeing the Ordering property; the other three
cases provide support for guaranteeing both prop-
erties. Let /G;_1, IG; and IG;; be three consec-
utive IGs, and let [and !’ be two landmarks that
belong to LG(L,E).

a) If | belongs to IG;_1, | will be propagated to
IG; (that is, it will be included in IG; too)
until a successor literal !’ in the LG(L, E)
(through a necessary order) is visited:
VieIG;_ 1 : (Vll eL: 1<, I'ANl ¢ IGz)

= IG; =1IG; U {l}

If none of the successor literals I’ of | linked
with a necessary order has been visited, | will
be propagated (it will be included in the next
IG) and so on until a successor literal is vis-
ited. The reason for this is to prevent / from
being deleted before the successor literal !’
is included in an IG because, if this were the
case, then [would have to be achieved again
before satisfying ['.

b) If two inconsistent landmarks [and !’ belong
to IG; and I is a propagated literal, | is de-
layed to IG;1 (that is, it is only included in
IGiy1):

Al,l' € IG, : inconsistent(l,1') N1' € IG;_1
N {IGZ- =1G; —{l}
IG;41 = IGi U {1}
If a propagated literal /' is inconsistent with
another literal [, then [’ is given more priority
for the reasons explained in the case above,
and [is the landmark to be delayed.

c) If two inconsistent landmarks [and !’ belong
to /G, and there is a literal [, in the previous
IG so that [, <, I', then [is delayed to IG1:
Al,l" € IG, : inconsistent(l,1")A
A, (Ip € IGi—1 N, <p 1)

N {IGZ- =I1G; —{l}
IGi41 = IGi U {1}
If a literal !’ is inconsistent with another lit-
eral /, and [’ is linked through a necessary
ordering with a literal in the previous IG,
then [’ is given more priority, and [is the
landmark to be delayed.

d) If two landmarks / and !’ belong to IG;, and
there is a landmark /" so that " <,, I’ and
I" is inconsistent with /, then [is delayed be-
cause the plan should achieve /' first in order
not to delete " with [.

ALV e IG;AT" 1" <, U' Ninconsistent(l,1")
N {IGZ- =1I1G; —{l}
IGH—I = IGi+1 U {l}

13

Again more priority is given to those neces-
sary orderings that are already established,
so that in case of conflict, the landmark to
be delayed is always the literal that does not
hold any necessary ordering with the literals
in the previous IG.

The IGs are computed by going through the
LG and by grouping together those landmarks ac-
cording to the active interferences explained above.
Taking into account that IGy = Z, the process of
building IG; works as follows:

1. First, an approximation to IG; is computed
with all the landmarks [that have a prede-
cessor literal I’ in IG;_1:

IGi={l€ LG/A' € IG;_, : I' < I}

2. Second, we refine this first approximation in
three stages:

(a) Delay landmarks [that have a predeces-
sor literal I’ in the LG such that I’ has not
been visited (Ordering Property).

(b) Propagate the corresponding literals from
IG;_1 to IG; (the first case of active in-
terferences).

(¢) Check the remaining active interferences
between the literals in IG;.

A special case is applied to literals from G. Once
aliteral g from G has been included in an IG, g will
be propagated unless an inconsistent landmark is
added in the same IG. In this case, g will be de-
layed to the last IG.

3.2.1. Cycles in the LG

One problem that we come across during the
construction of the IGs is due to the existence of
cycles in the LG. Cycles lead into a deadlock be-
cause none of the landmarks involved in the cy-
cle satisfy the Ordering property. For example,
in Figure 4, we find the following cycle: C={(in
Crate0 Truck0) <, (at TruckO Distributor0) <,, (lift-
ing Hoist2 Crate0) <, (clear Crate0) <,, (in Crate0
Truck0)}, where all the literals have a unvisited
predecessor.

Definition 8 A cycle in a LG(L, E) is defined as a
path whose initial and final node coincide:

by ylnslnyr € LVE < i <noe (U, liga) €
E N l1 == ln+1

14

Not in IG

n

delayed
|Gi.1 IGi

(c)

|Gi+1

IGi-1 IGi 1Gi+q

[ef 1Gi+q

Fig. 5. Cases of active interference

A literal [that is involved in a cycle will always
be delayed by step 2a of the refinement process in
the IG construction; thus ! will never be included
in an IG. A cycle provides very relevant informa-
tion as it points out that a least one of the liter-
als involved in the cycle must be achieved at least
twice. In the example above, (clear Crate0), a land-
mark from the initial situation, is ordered after an-
other landmark. This clearly indicates that (clear
Crate0) will appear at least twice in the problem:
once as a literal from the initial situation and later,
when Crate0 is dropped onto Pallet2. Therefore,
the behaviour of our algorithm must be modified
accordingly in order to exploit the information pro-
vided by the cycles and, at the same time, to avoid
the deadlocks that cycles may cause. This modifi-
cation aims at selecting the cycle start point from
the landmarks in the cycle. The cycle start point
is the literal that will be visited both first and last
(at least twice). Once the cycle start point, [, is
identified, [is included in the IG, and the remain-
ing literals in the cycle will be visited in the corre-
sponding order. Finally, [will be visited again as
the last literal in the cycle.

The cycle start point must be carefully selected
so as to minimize the number of landmarks in the
cycle that are visited twice unnecessarily. This pro-
cess is performed in two steps. The first step builds
the set of possible start points, which is the set of

literals whose incoming edges from the landmarks
in the cycle are not necessary orders. Note that a
necessary order forces the predecessor node to be
included in the previous IG, so the successor node
can never be the cycle start point.

Definition 9 Given a cycle C' of an LG, the set of
possible start points -SPy(C)- is defined as fol-
lows:

SPy(C)={leC/-A e€C:1 <, 1}

The second step refines the set SP;(C) and
builds a set of start points (SP(C)) rather than
selecting a single start point from SP(c), which
might likely lead to an incorrect decision. By pre-
viously computing a set of start points SP(C),
the mechanism for making the final decision be-
comes more trivial because the first literal reached
in this set will be considered as the start point
of the corresponding cycle. In other words, when
a literal [in SP(C) is selected to be visited, !
is included in an IG even though the Ordering
Property is not satisfied. The set SP(C) is com-
posed of those landmarks that have a higher pri-
ority to be reached twice in a plan, particularly
those from the initial situation or from the goal
set. In first place, the process for building SP(C)
checks the landmarks in the cycle that belong to
I (SP(C) ={l € SR(C)/l € I}) as these land-

marks are very likely to be achieved twice; once in
the initial state and later during the execution of
the plan. This is the case presented in Figure 4. If
no literal in the cycle belongs to 7, the algorithm
checks in second place the literals that belong to
the goal set (SP(C) = {l € SR,(C)/l € G}). A
literal / from the goal set appears in SPy(C) when
there exists another literal I’ in the cycle such that
I' <, lorl <, (Definition 9), which means that
achieving !’ after [would delete the latter. Since [
belongs to G, it seems reasonable to visit / in the
last place in the cycle and, therefore, it should be
visited in the first place, too. Finally, if no literal
belongs to Z or G, then SP(C) = SPy(C).

The above selection criteria identify those liter-
als which are the most likely to be achieved more
than once in the plan. A landmark from the initial
situation is first chosen as the cycle start point;
otherwise, a landmark from the goal set is chosen
as the cycle final point, and it will consequently
also mark the start point of the cycle. An incorrect
selection of the cycle start point would inevitably
lead to a degradation in the solution quality as it
would require more landmarks to be visited more
than once.

Once we have selected the cycle start point for
each cycle in the LG, the process for computing
the IGs is slightly modified. The application of this
modification may share a certain similarity with
the resolution of the Feedback Vertex Problem
[18] in the sense that when a literal [is selected as
the cycle start point all the incoming edges from
other literals in the cycle are temporally ignored.
This way, if [satisfies the remaining properties and
constraints, [will form part of an IG (even though
it has non-visited predecessor literals). Once [is
included in an IG, the ignored edges are recon-
sidered and become part of the LG again, which
will eventually lead literal / to be visited for the
second time.

We have experimentally confirmed that the
proposed criteria produce better quality plans
than random selection, for the domains used in
our experiments (see Section 3.4). Several tests
were performed on randomly chosen landmarks
involved in the cycle. The results show that better
quality solutions were always obtained when the
landmark that was selected as the start cycle point
was a literal from the initial situation, or when it
was a literal from the top-level goal.

15
3.3. Resolution of decomposed problems

In the previous section, the main features of
STelLa were described in detail. The final goal of
this decomposition technique is to obtain a plan
that solves the original problem. Once the interme-
diate goals have been computed, a set of sequen-
tial subproblems is built where each IG represents
the goal set of each subproblem. Figure 6 shows
the resolution scheme. The initial state of the first
subproblem is the initial state of the original prob-
lem 7, and the goal set is the first IG, IG;. Any
STRIPS planner that solves this first subproblem
returns a plan P;. The following initial state 1.5;
(intermediate state) is obtained as the result of ap-
plying P; to I. The second subproblem is com-
posed of this new initial state 1.5; and the next IG,
1G4, as the goal set. Again, this new subproblem
is solved by a planner to obtain P,, which is used
together with 1.5; to compute I.S;. This process
continues in the same way until the last IG, IG,,
is used as the goal set of a subproblem. Once the
plan P, is computed, the last subproblem is built
with 1S, and the goal set of the original problem
G. The solution plan P for the original problem is
computed by concatenating plans P;.

This solution plan P is correct provided that
the solution to each subproblem P; is produced
by a correct planner (we assume this is the case).
Moreover:

— The initial state of each P; is a correct state as
this is the result of applying the last computed
subplan to the previous subproblem.

— The goal set of the last subproblem is the goal
set of the original problem G. Therefore, if G
is not achieved through the resolution of the
different intermediate subproblems, G will be
achieved when solving the last subproblem.

For all these reasons, we can state that the com-
bination of our decomposition technique with a
correct planner will produce correct solutions.

However, our decomposition technique cannot
be guaranteed to be complete for two reasons:

1. The construction of non-reachable IGs due
to multi-mutez relations. In contrast with bi-
nary mutex relations (that is, when two lit-
erals are inconsistent), multi-mutex relations
[15] indicate that larger groups of literals
are collectively incompatible. The process of

16

BIORSIOR N

Initial IS, S
state A A

e e

) J R O D R U SN R U A

P4 P2

Pn Pn+1

“ore® ol

e

oo ol

Fig. 6. Resolution scheme

building the IGs only checks binary mutex
relations, so IGs with multi-mutex relations
may be built. However, in our experiments,
we have never found such a case.

2. The dead-ends originated in non-invertible
domains. A dead-end is a reachable state
from which the top-level goals can no longer
be reached [29]. Obviously, invertible do-
mains are dead-end free because from any
state that is reached after applying action a,
it is always possible to apply its counterpart
action o', which undoes a’s effects [22]. When
we deal with non-invertible domains, we may
generate an IG from which the goals can no
longer be reached. This situation arises for
several reasons; however, the most common
reason is when a literal [is included in an
IG that is previous to the correct one. In this
case, [is achieved before other literals that
cannot be reached from a state where [is
true. This occurs because the LG does not
contain essential information about some or-
ders between landmarks, which may prevent
the process of building the IGs to include a
literal in the right IG.

In spite of this incompleteness, the experiments
shown in the following section will demonstrate
that STelLLa is able to solve more problems than
other planners or other decomposition techniques.

The lack of information in the LG also affects
the solution quality (both in invertible and non-
invertible domains) because, again, some literals
may be included in incorrect IGs. This is par-
tially overcome thanks to the active interferences
computed during IG construction. By building a
conjunctive set of goals (intermediate goals), our
decomposition technique takes advantage of pos-
itive interactions between landmarks, which also
improves the quality of the solutions. If there is

a positive interaction between two landmarks, we
can exploit this advantage if the two landmarks
are in the same IG. Otherwise, this advantage may
be lost.

3.4. Experiments

In this section, we present the experiments that
were performed to observe the behaviour of STelLa
in solving the IPC2 and IPC3® benchmark suites®.
The tests were conducted on a Pentium 4, 2.0 GHz
with Linux RedHat 2.7 and a main memory of 1
Gbyte. We show two groups of experiments:

— In Section 3.4.1, we compare the perfor-
mance of three different planners (FF[21],
LPG[20] and VHPOP[45]) when solving the
original problem and the partioned problem
by STelLLa. We have selected these planners
because they are based on different planning
approaches and have been recognized in the
planning competitions as outstanding plan-
ners. FF is a heuristic planner, LPG is based
on local search, and VHPOP is a partial-order
planner.

— In Section 3.4.2, we compare STel La (using FF
as a base planner) with another two decom-
position techniques, FF-L and SGPlan, whose
main features are explained in Section 2.

First, it is important to analyse the level of de-
composition of the different domains, that is the
number of IGs that can be obtained when using
our decomposition technique. The number of IGs
depends on how many landmarks and orders are
obtained for a certain problem, so the level of de-
composition cannot be set a priori. The number

8IPC stands for International Planning Competition.
9A complete description of these domains can be found
in the Web sites of IPC2[2] and IPC3[17]

of extracted landmarks depends on whether the
various alternatives (sequences of actions) for ob-
taining a particular literal share common require-
ments (action preconditions); these common re-
quirements will be part of the landmarks set. Also,
the number of orders established between land-
marks depends on the number of interactions be-
tween them.

Figure 7 (left) shows the number of IGs gener-
ated for the blocksworld, elevator, freecell and logis-
tics domains. Figure 7 (right) shows the number
of IGs generated for the depots, driverlog, satellite
and zeno domains. The domain in which the most
IGs are obtained is the blocksworld domain. This is
because of the large number of landmarks and the
highly- interactive top-level goals. In this domain,
many orders are generated between landmarks be-
cause top-level goals have to be reached in a spe-
cific order with only one robot arm. A similar anal-
ysis can be made for the elevator domain (Figure 7
left) and the depots domain (Figure 7 right). In the
freecell domain, the obtained landmarks basically
come from the initial and goal state, so it is almost
impossible to identify intermediate situations. The
IGs for this domain are due to the orders found be-
tween the top-level goals. This is actually not very
helpful for solving the partitioned problem, as we
will see in the following section. In summary, the
more interactions between goals and subgoals, the
greater the number of IGs that can be obtained.
This is especially the case for domains that have
only one non-shared available resource.

In the logistics domain, there are two types of
problems: (1) those where only one airplane is
available (until instance 22) and (2) those where
there are several airplanes to fly between cities.
In the latter case, fewer landmarks can be found
because there are more alternatives to solve the
problem, which also determines that there will be
fewer interactions between landmarks. This fact is
particularly noticeable in domains such as driverlog
(Figure 7 right), where several alternatives (sev-
eral trucks and several intermediate cities) can be
used for the same purpose; consequently, only one
IG (which coincides with the goal set) is obtained.
A similar situation occurs in the satellite and zeno
domains. In domains that cannot be decomposed,
solving the partitioned problem is equivalent to
solving the original problem.

Table 3 shows a breakdown of the average time
required to decompose the problem. It can be ob-

17

served that, in general, decomposing a planning
problem is not very time-consuming. However, in
the blocksworld domain, where the obtained LGs
are very informative, the processes for computing
the orders between landmarks and for building the
IGs are more costly. This makes up for the fact
that we obtain simpler problems as the results will
show. For some domains (freecell and zeno), where
the obtained IGs are not helpful, the IG construc-
tion takes considerable time due to the fact that in
these domains the LG is not informative in terms
of orders; therefore, many active interferences need
to be computed.

3.4.1. FF, LPG and VHPOP

In this section, the performance of three plan-
ners (FF, LPG, and VHPOP) is compared when
they are used to solve the original problem and
the set of subproblems generated by STeLLa. The
aim of this comparison is (1) to verify whether
the decomposition facilitates the resolution of the
problem (by comparing the number of problems
solved by the two configurations), (2) to evaluate
how the solution quality is affected when STel La is
used and (3) to analyse in which domains and with
which type of planners our decomposition tech-
nique is more efficient.

Table 4 shows the number of problems solved
by each planner in each domain. The second line
in each row correspond to our decomposition tech-
nique using the indicated planner as a base plan-
ner. Figures 8 to 11 show the performance in
solving instances from IPC2 and IPC3. The X
axis in these charts represents the results (the
makespan and the CPU time) which were obtained
when STelLLa-planner solved the partitioned prob-
lem. The Y axis represents the results of these
planners when solving the original problem. The
symbols above the line indicate that the results ob-
tained by STelLLa-planner were better than those
obtained with the original planners themselves.
To complete the experiments within a reasonable
amount of time, we restricted the time consump-
tion to 100 seconds for FF and LPG, and we re-
stricted the memory consumption to 512 Mb for
VHPOP!0. The results of LPG were obtained as the
average of 5 runs.

The most outstanding result is that the three
planners solve more problems when they are ex-

10This is due to the fact that VHPOP exhausted memory
before the CPU time limit.

18

140

T
Blocks —GO—
Elevator —ll-—-
Freecell -~
120 |- Logistics ~fF

100

80

Number of IGs

60

40

20

100 120 140

Instances

Fi

=

T T

Depots —S—

Driverlog --——--
Satellite --- -
Zeno ~{-}

Number of IGs
o
T

=)
T

e e e o el |
2 4 6 8 10 12 14 16 18 20
Instances

g. 7. Number of IGs generated for each instance in domains from IPC2 (left) and IPC3 (right) planning competitions.

Blocksworld Elevator Freecell Logistics Depots Driverlog Satellite Zeno
Landmarks 0.17 0.61 0.85 0.28 0.08 0.03 0.03 0.05
Orders 15.9 1.31 0 0.31 0.08 0 0 0
1Gs 3.3 1.17 4.84 0.74 0.24 0.07 0.26 4.24
Table 3
Breakdown of decomposition time (secs.)
Blocks Elevator Freecell Logistics Depots Driverlog Satellite Zeno
Total 102 150 60 7 20 20 20 20
FF 7 150 50 7 17 15 20 20
STelLa-FF 102 150 48 7 20 15 18 20
LPG 48 150 10 7 20 20 20 19
STeLLa-LPG 86 150 18 7 20 19 20 19
VHPOP 0 52 0 71 2 4 11 9
STelLLa-VHPOP 84 150 10 7 18 6 13 10
Table 4

Number of problems solved by FF, LPG, and VHPOP for the domains of the IPC2 and IPC3 planning competitions.

ecuted with our decomposition technique (Table
4). This was specially notable in VHPOP!! which
was able to solve 368 problems (out of 469) using
STelLa and only 149 when it was executed with
the original non-partitioned problem. This implies
that our decomposition technique decomposes the
original problem into simpler problems, which can
then be handled more easily by these planners.
In addition, though solving a partitioned prob-
lem usually implies a lack of quality in the solu-
tions (since the problem is not being considered
as a whole), our results show that the decompo-
sition method used by STelLLa allowed us to pre-

" There are very few comparisons of the STeLLa execu-
tion time with respect to VHPOP because it solved very few
problems.

serve the quality of the solutions and even obtain
shorter plans in many cases. In particular, FF and
STelLa-FF computed solutions of almost identical
quality for most of the domains. Figure 8, Figure
9 and Figure 11 show that the results obtained by
FF were always on or very close to the line. The
results also show that STelLLa-FF outperformed FF
in the depots domain in terms of solution qual-
ity (Figure 10). Similar conclusions can be drawn
when comparing VHPOP and STeLLa-VHPOP. It
is especially relevant to note that STelLLa obtained
better quality solutions for the elevator and depots
domains (Figure 8 and Figure 10).

With regard to the execution time of parti-
tioned problems, it must be taken into account
that the time spent parsing all of the subproblems

700

FF X ‘
PG [Blocksworld domain
VHPOP A
600 g
500 =
- =]
§
&
% 400 =
= [oo 7
T O O
4 O
]
2] O
§ 300 | g
a
3 O
& B O-oo o
o]
. . . .
300 400 500 600 700
STelLa - Makespan
120 T
Elevator domgin
100 xX
§ 80 4
&
g
]
=
2 60 [g
2
g
S
a
3
& 40 g
20 —
o
0 10 20 30 40 50 60 70 80 9 100 110
STelLa - Makespan
100 T T T T T T T T T
Llf(g é Freecell domain
% 'y]
VHPOP X %
80 | %]
X % X
X
. T0F g
g X
% 60 4
= x B
@ 50 1 g
g P
£ X
S 40 []
3]
L =8
30k x% |
D
20 M %3%]
ol
10 | % —
0
0 10 20 30 40 50 60 70 80 90 100

STelLa - Makespan

19

100000

T R e L T i) T T
s U E x Blocksworld domain
O O
10000 EP X 1
X
O
G :
£
g 1000 X b 4
= X
® <
s X
g xx X X w oo % o
- 100 XX X 4
3 SR
&
@
10 4
FF X
PG [
VHPOP &
1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
STelLa - Time (ms.)
100000 T T T T T
R 2 A Elevator domain
A
A
A A
10000 £, & -, 4
A u
—~ s
g A
2 1000{ 4
= -
®
5]
£
s
a 4
@
k]
@
FF
PG [
s ‘ ‘ ‘ ‘ , VHPOR 4
1
0 5000 10000 15000 20000 25000 30000 35000 40000
STelLa - Time (ms.)
100000 T T B T T T
X
X Frésceil domain
X
O xH » 0
10000 | m} 4
- = o O
2 1=
€ XX
e X
i && X
g 1000 | E
2 SORX
8
S
3
8
[:]
100 !
FF X
PG [
VHPOP 4
10 n
0 10000 20000 30000 40000 50000 60000 70000

STelLa - Time (ms.)

Fig. 8. Comparison between STeLLa and FF, LPG, and VHPOP in the blocksworld, elevator and freecell domains.

must be added to the decomposition time. That is,
after the problem has been partitioned, the base
planner has to parse each subproblem to solve it'2.
This factor made STelLLa much slower than FF
and LPG for most of the domains (Figure 8, Fig-
ure 9 and Figure 11) although STelLa ran faster

12This overhead could be avoided by embedding each
planner into STelLLa. However, this is not desirable because
it would entail losing the independence STelLLa has from
the base planner.

for some problems in the depots domain (Figure
10). In other cases, just the decomposition of the
problem took longer than solving the original one.
This occured, for example, in the blocksworld do-
main with FF (Figure 8). Table 3 shows that de-
composition was costly in this domain; however,
in this case, the increase in the number of solved
problems made up for the overhead of problem
decomposition. In contrast, LPG and VHPOP im-
proved their performance when using STella in
most problems of the blocksworld domain, in spite

20

140 T T =

FF

LPG [J Depots domain
VHPOP &
120 - 4
Uo
XO o
100 4
: M gx
§
I3
3w
= X X X
4
g X
5 60 X ,
> =]
2
: 7P
¢ 40 - o o 4
NCa
20 = 4
A
aXd
0 . . .
0 10 20 30 40 50 60 70 80 90 100
STelLa - Makespan
350 T T
FF
LPG [] Driverlog domain
VHPOP &
300 |- o
250 |- 4
c
§
I3
£ O
S 200 4
o O
g
g
& 150 O 4
3
g
o
100 4
O O
O
X 4
X

. . . .
0 50 100 150 200 250 300
STelLa - Makespan

100000 T
Depots domain

ml
X B |

10000 O B

1000 F X X E

Base planners - Time (ms.)
2
8
T
L

FF

LPG

‘ ‘ ‘ ‘ VHPoP
5000 10000 15000 20000 25000 30000
STelLa - Time (ms.)

»OX

f

100000

= T T T
LPG
VHPOP

»LOX

Driverlog domain =]

10000 | E|

A
A
O

1000

Base planners - Time (ms.)

100

3 X
D
X x

10
0 5000 10000 15000 20000 25000 30000 35000
STelLa - Time (ms.)

Fig. 10. Comparison between STelLLa and FF, LPG, and VHPOP in the depots and driverlog domains.

of this overhead.

As a conclusion, we can affirm that using STelLa
allows base planners to solve a greater number of
instances with similar or even better quality than
when solving the original problem. This is specially
notable in domains with a high degree of interac-
tion, such as the blocksworld and depots domains.
On the other hand, its applicability is limited in
terms of execution time. However, this limitation
may be partially overcome by using a concurrent
resolution of the subproblems, as Section 4 shows.

3.4.2. STelLLa-FF vs. FF-L and SGPlan

In this section, we present a comparison of
STelLa-FF planner with SGPlan and FF-L. These
last two decomposition techniques also use FF
to solve the obtained subproblems. We have fo-
cused our comparison on decomposition tech-
niques which use landmarks and FF as base plan-
ner'®. In these experiments, we restricted time
consumption to 100 seconds. Table 5 shows the

13This is the reason why we have not compared GRT with
STelLa.

number of problems solved by each approach for
each domain, Figures 12 to 14 show the perfor-
mance in solving instances from IPC2 and IPC3.
These charts can be interpreted in the same way
as in the previous section.

FF-L is a decomposition technique based on the
use of landmarks as explained in Section 2. This
is the system STelLa is based on and from whom
it borrows some definitions (as said in section
3.1). FF-L computes a set of landmarks and a
set of necessary, reasonable and obedient orders
between them to obtain a landmark generation
graph (LGG). The main difference between the
LGG computed by FF-L and the LG computed
by STelLa is that STelLLa removes some incorrect
necessary orders before calculating the reasonable
and obedient orders which helps our system ob-
tain more accurate IGs.

Once the LGG has been obtained, FF-L uses it
to decompose the planning task into small chunks,
which can be handed over to any planning algo-
rithm (in [37] and [24], IPP, FF, and LPG were
used). Unlike our approach (which computes con-

110 T T

T T
FF X
PG (O Satellite domain 8
100 -vhpoP A& 7
90 9
80 - 9
c
g
g ol EX |
£
] i}
= e O X 1
0 &}
2 0, X
S 501]
5 =78
o X
8 4o 4
@ ><><>é @(
wr @ 1
A
ol a®]
0
0 10 20 30 40 50 60 70 80 90 100 110
STelLa - Makespan
160 v T T
FF X
LPG [Zeno domain
VHPOP &
140 | VHPO o b
120 |]
§ o
2 100 | R
g X
) X
o L]
] 80 [EiR}
g
5
° O X
2 60 R
& 0
X
40 za 1
O
x
20 R
&0
o . =i
0 20 40 60 80 100 120 140

STelLa - Makespan

21

100000
Satellte domain
10000 E
—~ X
E X X
) A A
13 &
£
g o0 p o g
g
£ O
2
‘ﬁ O
g &g
100 {4 E
X
X
X FF X
LPG O
VHPOP &
10 7
0 2000 4000 6000 8000 10000 12000 14000
STelLa - Time (ms.)
16406 .
Zeno domain
X
100000 O 5 D*
A A A
E a oo
e 10000 B
£
2]
€
5
° 1000 1
2
& i
]
100 X 1
X X X
LPG O
X VHPOP &
10 i
0 20000 40000 60000 80000 100000 120000

STelLa - Time (ms.)

Fig. 11. Comparison between STeLLa and FF, LPG, and VHPOP in the satellite and zeno domains.

Blocks Elevator Freecell Logistics Depots Driverlog Satellite Zeno
Total 102 150 60 7 20 20 20 20
STelLLa-FF 102 150 48 7 20 15 18 20
FF-L 40 150 36 7 18 14 20 20
SGPlan 43 150 56 7 19 15 20 20
Table 5

Number of problems solved by STelLLa-FF, FF-L, and SGPlan for the domains of the IPC2 and IPC3 planning competitions.

Jjunctive goals), FF-L builds disjunctive goals; it is
said that a disjunctive goal is satisfied when at
least one literal in the disjunctive goal has been
achieved. This is the main difference between FF-L
and STelLa . Since the process to calculate these
disjunctive goals does not reason about the con-
venience of including a literal in a certain goal,
this makes the plans obtained by FF-L longer than
the ones obtained by STelLLa-FF in domains such
as elevator (Figure 12), logistics (Figure 13), de-
pots (Figure 14) and zeno (Figure 15). Moreover,
STelLLa-FF solves more problems than FF-L (Table
5). The reason behind these improvements is that
our methods takes into account positive as well

as additional negative interactions between liter-
als in order to build the IGs. On the other hand,
FF-L is slightly faster in general, mainly due to the
overhead that the parsing of all the subproblems
causes in STel La-FF.

SGPlan performs a problem decomposition at
two levels: first, it partitions the problem into a set
of subproblems with one subproblem for each top-
level goal; second, each subproblem is then decom-
posed by landmarks. More precisely, SGPlan parti-
tions the problem into n subproblems G4, ...,G,,
one for each fact in the top-level goal. Then, it or-
ders the subproblems according to three heuristics
for partial ordering of subgoals. The first level is

22

220

200 Blocksworld domain 1

180 - —

160 | —

140

120 |

100

FF-L/ SGPlan - Makespan

80

60 [

40 F

20 [

. . .
0 20 40 60 80 100 120 140 160
STelLa-FF - Makespan

140 T T T

Elevator domain

120

100

80

60 [

FF-L/ SGPlan - Makespan

40

20

L L L L L L
0 10 20 30 40 50 60 70 80 90 100 110

oL, L L L

STelLa-FF - Makespan

T T
Blocksworld domain

FF-L/SGPlan - Time (ms.)

1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
STelLa - Time (ms.)

100000

T T
SGPlan X "
FFL [Elevator domain

10000

1000 -

FF-L/ SGPIan - Time (ms.)
3
3

.
0 2000 4000 6000 8000 10000 12000
STelLa - Time (ms.)

Fig. 12. Results of STeLLa-FF, SGPLAN, and FF-L in problems of the blocksworld and elevator domains.

called reasonable ordering, which was proposed in
[29] (see above). The second and third level of or-
dering, called irrelevance and precondition order-
ing, respectively, are based on the idea of solving
more difficult subgoals first. Once the subproblems
have been ordered, SGPlan solves them. Some-
times the subproblems obtained after the first or-
dering level are still too large, so SGPlan applies a
second level of decomposition by discovering land-
marks [24] and ordering them according to what in
[24] are called necessary orderings. This way, SG-
Plan solves each of these subproblems and obtains
a plan for each G;.

Therefore, at first glance, the decomposition
method utilized by SGPlan is similar to the one
used in STella. However, the main difference
between these two approaches lies in the or-
der in which these landmarks are solved. SGPlan
achieves each top-level goal separately, i.e. it ig-
nores possible positive interacions. Therefore, the
extracted landmarks do not contain this informa-
tion. STelLLa, however, interleaves the computa-
tion of landmarks for the different top-level goals

using the information provided by reasonable and
obedient orders and active interferences. This ex-
plains why STelLa outperformed SGPlan in highly
interactive domains such as the blocksworld do-
main (Figure 12). In this domain STelLLa solved
many more instances than SGPlan much faster and
with better quality. A similar situation occured
in the logistics (Figure 13) and depots (Figure 14)
domains, whereas in the remaining domains, both
approaches obtained solutions of similar quality,
but SGPlan worked slightly faster.

As a conclusion we can affirm that there are two
main differences between STelLLa and FF-L and
SGPIlan. Firstly, the technique for construction of
the IGs and for handling cycles in the LG and,
secondly, the architecture of STeLLa which allows
different planners to be easily plugged into the
framework.

4. Concurrent resolution

From the experiments in the previous section,
one noticeable conclusion is that planners are able

100

SGPlan' X
FRL [

Freecell domain

80

70 |

60 [

50 [

40

FF-L/ SGPlan - Makespan

30 |

20 [

. . .
[10 20 30 40 50 60 70 80 90 100
STelLa-FF - Makespan

350 T T

Logistics domain
L ol
300 I:% O
X
250

200 -

150

FF-L/ SGPlan - Makespan

50

K
0
0 50 100 150 200 250
STelLa-FF - Makespan

23

1e+06 T

T T
Freecell domain

100000

10000 [

FF-L/SGPlan - Time (ms.)

.
0 5000 10000 15000 20000 25000 30000 35000 40000
STelLa - Time (ms.)

100000

T
SGPlan X " .
FFL O Logistics domain

FF-L/ SGPIan - Time (ms.)
3
3
1

.
0 2000 4000 6000 8000 10000 12000
STelLa - Time (ms.)

Fig. 13. Results of STeLLa-FF, SGPLAN, and FF-L in problems of the freecell and logistics domains.

to solve more problems when they use STelLlLa to
decompose planning problems. However, time per-
formance gets worse (to the point that a planner
with STelLLa only behaves better in some particu-
lar domains) because of (a) the time spent in com-
puting the IGs and (b) the time spent in parsing
each subproblem.

The IG construction process computes the goal
sets of all subproblems before starting their reso-
lution. Since all the IGs are known in advance, we
might be able to come up with a method to cal-
culate the final state reached by each subproblem
and apply a concurrent resolution. A concurrent
problem-solving technique may provide important
time savings and improve STelLLa performance in
the tested domains. This section details the tech-
nique we have developed in order to build the in-
termediate states before solving the subproblems.
Our goal is to complete the goal sets to approxi-
mate the state that would result after solving each
IG. This state is called intermediate state.

Definition 10 An intermediate state (IS) is a com-
plete description of the world that contains the lit-

erals from IG; plus some additional literals that
are necessary to complete the state reached after
solving IG;: 1S; = IG; U L

Ideally, I5; would be the resulting state from
solving problem 7 — 1, which would be used as ini-
tial state for problem 4. This formulation still im-
plies a sequential resolution, so our goal is to cal-
culate an approximation to 1.S; without having to
solve problem i —1. The process to approximate an
intermediate state I.S; consists in calculating the
set of literals L that makes I.S; be the closest con-
sistent state to IG; (according to I.S;_1). In order
to do so, we use the concepts of property space
and state invariant, which are explained in Sec-
tion 4.1. Section 4.2 introduces the main ideas for
constructing the ISs, and Section 4.4 shows how
STelLa’s performance improves when using a con-
current, resolution.

4.1. Property Spaces and State Invariants

In this section we repeat (sometimes in a re-
duced form) the definitions of property spaces and

24

140 T
SGPlan X O
FFL [

120 4

FF-L/ SGPlan - Makespan

Depots domain

o
10 20 30 40 50 60 70 80 %0
STelLa-FF - Makespan
60 .
SGPlan X
FFL Driverlog domai
50 | —
X
O
§ 40 4
g
8
K
&
2
S 30 —
[
&
3
3
20 4
10+ 1
o
0 10 20 30 40 50 60

STelLa-FF - Makespan

1e+06 T T T T
Depots domain
100000 b

10000

1000

FF-L/SGPlan - Time (ms.)

100 |

.
0 1000 2000 3000 4000 5000 6000 7000
STelLa - Time (ms.)

1000 T T T T

T T
Driverlog domain

=)
3
T

FF-L/SGPlan - Time (ms.)

>
T
L

.
0 50 100 150 200 250 300 350 400 450 500 550
STelLa - Time (ms.)

Fig. 14. Results of STeLLa-FF, SGPLAN, and FF-L in the depots and driverlog domains.

invariants given by Fox and Long [15], which make
up the basis for our method to compute the inter-
mediate states. A property space, a notion offered
by TIM (Type Inference Module), defines which
properties an object must necessarily hold in a par-
ticular problem state.

Definition 11 A property is a predicate subscripted
by a number between 1 and the arity of that predi-
cate. FEvery predicate pr of arity n defines n prop-
erties: {pri,pra,...,prn}. The set of all possible
properties in a domain is denoted as PR.

For example, in the depots domain, TIM builds
two properties from the predicate lifting: liftingl
and lifting2.

TIM starts the analysis of the domain by rep-
resenting the domain as a collection of finite-state
machines (FSMs) with domain constants (objects)
traversing the states within them. When two ob-
jects participate in identical FSMs, they can be
considered as being of the same type. Figure 16
shows the FSMs for the type hoist in the depots
domain. Transition rules represent the state trans-

formations that comprise the FSMs traversed by
the objects in the domain.

Definition 12 A transition rule is an expression of
the form: E = S — F, in which the three com-
ponents are bags of zero or more properties called
enablers, start and finish, respectively. The set of
oll the possible transition rules in o domain is de-
noted as TR. A transition rule R specifies which
properties an object gains or loses as a result of the
application of an operator over a bag of properties
P:

result(P,R)=P—-SUF if E,SeP

As Figure 16 shows, any hoist which has prop-
erty [lifting1] will gain property [availablel] and will
lose property [lifting1l] when operators drop or load
are applied. Also, hoists never lose property [atl]
because no action can eliminate it.

Definition 13 A property state (PS) is a bag of

properties™.

14This concept is called state in [15], but we prefer to use
property state to distinguish a bag of properties from a set
of literals (state in the planning problem).

SGPlan X
FRL [

Satellite domain

60

FF-L/ SGPlan - Makespan
IS
&

. . . .
0 10 20 30 40 50 60 70 80
STelLa-FF - Makespan

100 4

FF-L/ SGPlan - Makespan

20

Zeno domain

0 X L L L L L
0 10 20 30 40 50 60 70 80 90 100

STelLa-FF - Makespan

25

10000

T T T T
é Satellite domain

1000

100

FF-L/SGPlan - Time (ms.)

4
4 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
STeLLa - Time (ms.)

100000 T

SGPlan | X
FRL [

10000 |- X A
= O
E
e 1000 | B
£
<
&

a
5]
2 100 R
S
w
&

10 B

Zeno domain
1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

STelLa - Time (ms.)

Fig. 15. Results of STeLLa-FF, SGPLAN, and FF-L in the satellite and zeno domains.

Definition 14 A property space is a tuple of four
components: a set of properties, a set of transition
rules, a set of property states and a set of domain
constants.

TIM identifies the initial properties of individ-
ual objects and uses them to form property states
of the objects in the property spaces. The initial
states in a property space are then extended by the
application of transition rules in the space to form
complete sets of property states, which accounts
for all the states that objects in that property
space can possibly inhabit. Therefore, any object
in a particular property space must have one (and
only one) property state in each problem state.
The list of property states in the property space
for type hoist in the depots domain is: {{[atl],
[lifting1]}, {[at1], [availablel]}}. This means that a
hoist is always at a location and it can either be
available or it is lifting a crate. The following list
defines the property states for a crate:

1. [clearl, onl, atl]: this PS indicates that, in
a valid state, a crate is clear; it is on a pal-

let or on top of another crate; and it is at a
distributor.

2. [on2, onl, atl]: this PS indicates that a crate
has another crate on top of it; it is on a pal-
let or on top of another crate; and it is at a
distributor.

3. [lifting2]: this PS indicates that a crate is be-
ing lifted by a hoist.

4. [in1]: this PS indicates that a crate is in a
truck.

Finally, TIM uses the property spaces to deter-
mine state invariants that govern the behaviour of
the domain and the objects in it. We are interested
in state membership invariants and uniqueness in-
variants (invariants that characterize the unique-
ness of state membership).

Definition 15 A state membership invariant is an
expression of the form:

Vz(Disjuncty V ...V Disjuncty)

Only one state membership invariant is con-
structed for each property space. Fach property

26

300
0 @

Logistics domain o

250 |- E@F 4
OHRK

200

150

Base planners - Makespan

100

]
50 —
A
FF X
PG [
‘ VHPOP &

. . .
0 50 100 150 200 250 300
STelLa - Makespan

100000

Logistics domain
X X
1 D S
0000 S g
X >2<>< — R K X
XX XX o O
N LBRX 0 o e
g oo g @0
o 1000 ﬁ]ﬂ@ il
&
&
¢
2
g
§
a 100 4
3
&
@
10 4
FF X
PG O
1
0 2000 4000 6000 8000 10000 12000
STelLa - Time (ms.)
16406 :
,,,,,,,,,,,,,, e ogistics domain
A a ﬁ
- A
100000 - & A A A ad E
ﬁ 7y A
/a ‘
10000 —‘? 4 4

1000 4

Base planners - Time (ms.)

§TeLLa-VHP9P A

. . . .
0 100000 200000 300000 400000 500000 600000 700000
STeLLa - Time (ms.)

Fig. 9. Comparison between STelLLa and FF, LPG, and VH-
POP in the logistics domain.

state of the property space is used to build a single
disjunct. If the property state contains m proper-
ties denoted as P'...P™, TIM builds the follow-
ing disjunct (assuming that © is in the first posi-
tion of the predicate):

39, -« Y (P (z, 51)AP? (2, Ys)A. . . AP™(2,7,,))

where y; are vectors containing n — 1 wvalues.
That is, a state membership invariant states that

Lift, Unload
Drop, Load

Fig. 16. Transition rule for hoists

available1

an object associated with a property space satisfies
at least one property state of that property space.

For example, the state membership invariant for
the type crate is:

Vz € crate : ((clear(z) A Jy € crate U pallet :
on(z,y) A Jy € location : at(z,y)) V Ty €
crate U pallet : on(z,y) A Jy € crate : on(y,z) A
Jy € location : at(z,y)) V (Fy € hoist
lifting(y,z)) \V (Jy € truck : in(z,y)))

It is easy to see that this invariant is a represen-
tation of the PS list for the type crate enumerated
above in first order logic.

Definition 16 A uniqueness invariant states that
each object associated with o property space satis-
fies no more than one property state of that prop-
erty space. A uniqueness invariant is defined for
every pair of property states P,Q (assuming that
is in the first position of the predicate):

Vo= ((3, - .. (P (2, 71) A ... A P™(2,7,))) A
(31T (QY (2, 7)) A - AQ™(2,7,,))))

where Y, are vectors containing n — 1 values.

For example, one of the uniqueness invariants
for the type crate is:

Vz € crate : =((clear(z) A Jy € crate U pallet :
on(z,y) A Jy € location : at(z,y)) A (3y € hoist :
lifting(y,x)))

This invariant indicates that there is no valid
state if a crate is on a surface (pallet or another
crate) and being lifted by a hoist at the same time.
A set of invariants in the same form is defined to
prevent a crate from (partially or completely) sat-
isfying two PSs at the same time.

As [15] details, the process used to compute the
property spaces guarantees that all the reachable
states will be in the appropriate property space. In
addition, the complexity of this process has been
proved experimentally to be linear with the num-
ber of operators and constants in the domain and
with the size of the initial state of the particular
problem.

4.2. Intermediate states

In general, given a subproblem P; = <A, 1S;_1, IGi>,

18; will be known after solving P;. Our aim is to
eliminate this dependency between subproblems
and solve all P; concurrently. Therefore, we need
to compute each 1.S; in advance. The input of this
process will be P; and the property spaces and in-
variants discovered for the corresponding domain.

As an initial approximation, I.5; will contain the
literals in IG;, since literals in the goal set will
appear in the state reached after solving P;. Ad-
ditionally, we could add the literals in 1.5;_; that
are consistent with literals in IG;. However, this
approximation of I.S; might likely contain incor-
rect literals. Likewise, there could be missing liter-
als that should appear in 1S;. Next, we state the
formal definitions for a correct intermediate state.

Definition 17 An intermediate state IS; is said to
be correct when both the state membership invari-
ants and the uniqueness invariants are satisfied by
all of the objects in the domain.

This affirmation relies on the fact that a state
membership invariant represents all the possible
states that an object of a certain type can reach,
and all the uniqueness invariants related with that
type indicate that the object must be at only one of
those states. The combination of these invariants
will result in this object being in a correct state
provided that both the state membership and the
uniqueness invariants inferred by TIM are correct.
This has been proved in [15].

The problem of building a correct I1.S; can be for-
mulated as the process of building a correct state
S, for each object in the planning problem, that
is: IS; = Uy, So- Each S, will contain the literals
in IG; referring to o. The remainder of this section
is focused on explaining how S, is computed for a
particular object o. First, we introduce some basic
definitions.

Definition 18 An object o of a planning problem is
said to belong to a literal | (and denoted as be-
longs(o,l)) when it appears as an argument of this
literal.

Definition 19 Given an object o and a property p =
pri, such that p € o, we say that p can be instanti-
ated with a valid literal I = pr'(aq,...,ay), which
is denoted as p > 1, if pr = pr' and belongs(o,1).

27

For example, given the object Hoist0 and the lit-
eral (lifting Hoist0 Crate0), we can affirm that be-
longs(Hoist0,(lifting Hoist0 Crate0)) is true. On the
other hand, given the same object and the prop-
erty lifting1, liftingl can be instantiated with literal
(lifting HoistO Crate0).

The process to build S, for a particular object
o is based on the property spaces discovered for
the corresponding domain. Each object must ful-
fill the state membership invariant at each state.
This means that the properties an object has in a
particular state will coincide with a property state
(and only one, due to the uniqueness invariants).
Therefore, if we find which PS is closer to the state
that o must have in I.S;, we can complete S, with
an instantiation of the remaining properties, that
is, those that are not present in IG;. Therefore, in
the first step, we study the properties that the ob-
ject o has in I.S;_; and we determine which prop-
erties the object o will gain and lose in I.S;.

Definition 20 Given IS;_1 and IG; and a property
state PS,,, we define the following sets for any
object o:

— CurrProp, = {p € PR/l € IS;—1 : (p>
I A belongs(o,1))}, this set will contain those
properties that o currently has.

— AddProp, = {p € PR/3l € IG; : (p>IA
belongs(o,1))}, this set represents the proper-
ties that o must have in 1S;.

— DelProp, = {p € PR/3l € 1S;_; : (T €
IG; : inconsistent(l,1")) Apt>IAbelongs(o, 1)},
this set indicates which properties of o will not
be in IS;.

The next step consists of selecting a property
state PS, among all the PSs offered by the prop-
erty space associated with the type of o. This PS,
will be the PS that is the most compatible with
the properties contained in CurrProp,, AddProp,
and Del Prop,, since these sets denote all the in-
formation we know about 0. Namely, we apply the
following definition to determine which PS is closer
to the state that o will have in I.5;.

Definition 21 Given two property states PS; and
PS;, PS; is closer to the state of an object o in I1.5;
than PS; if any of the following conditions hold:

(a) PS; is closer than PS; if there is a transi-
tion rule that if applied to the current prop-
erties of o generates a set of properties that

28

contains PS; and we cannot find such a tran-
sition rule for PS;:
dR; € TR : PS; C result(CurrProp,, R;) A
-3R; € TR : PS; C result(CurrProp,, R;)

(b) PS; is closer to the state of o in IS; if all the
properties that must be added belong to PS;
but not to PS;:
Vp € AddProp, : p € PS; A 3Ip € AddProp, :
p¢ PS;

(c) PS; is closer than PS; if it does not contain
any deleted property and PS; does:
Vp € DelProp, : p ¢ PS; A3dp € DelProp, :
pE PSJ

(d) PS; will be closer than PS; if the number of
properties in CurrProp, and AddProp, that
do not belong to PS; is smaller than the num-
ber of properties in these sets that do not be-
long to PS;:
{p € PS; : p ¢ CurrProp, U AddProp,}| <
{p € PS; : p ¢ CurrProp, U AddProp,}|

Given PS,, the most compatible PS with prop-
erties in CurrProp,, AddProp,, and Del Prop,,
the final step for building S, is to find a set of lit-
erals such that each of them instantiates one prop-
erty in PS,. The properties in AddProp, will be
directly instantiated with the literals in I'G; that
refer to o; we call this set AddLits, and it is de-
fined as: AddLits, = {l € IG;/belongs(o,1)}. The
remaining properties in PS, will be instantiated
with the side-effects of the actions that add the
literals in AddLits,. The objective is to select the
most appropriate action (among those that add
the literals in AddLits,) to be able to instantiate
as many remaining properties as possible. In case
there are several candidate actions, we select those
actions that match the greatest number of remain-
ing properties. From this new set, we give higher
priority to those actions that have more precondi-
tions supported in 1.5; 1 that are not related to the
object o. The idea behind is to first select an action
that assumes that the states of the rest of objects
remains unaltered. If there exists an action that is
completely applicable in I.5; 1, we select that ac-
tion; otherwise, we assume the literals in AddLits,
have been achieved through the application of a
sequence of actions (particularly by the last action
of the sequence) and, therefore, none of these last
actions will be totally applicable in I.5;_;. In this
latter case, an action is arbitrarily selected. Once
an action is selected, the remaining properties of

PS, will be instantiated with the corresponding
arguments of the instantiated action effects.

The process for building S, guarantees that S,
satisfies the corresponding state membership and
uniqueness invariants, because we select one (and
only one) PS from all the possible PSs and then
only one literal per property is included in S,.
Therefore, an I.S; which is built as the union of all
S, (one for each object) will be a correct state.

It is important to remark that S, is built, in
principle, only for all the objects that appear in
IG;. However, in some cases, the state built for an
object o may imply changing the state of another
object o'. Then, the new state of o', S, is also
computed. When the state of one object has been
computed, it is used as a basis for computing the
state of the remaining objects so that the final I.S;
is completely consistent.

We now show an example of computing S, in the
depots problem in Figure 1 for the object Crate0.
Let 1S3 contain the following literals, among oth-
ers: {(lifting Hoist2 Crate0), (at Hoist2 Distrib-
utor0), (clear Pallet2), (at Pallet2 Distributor0)}.
Let literal (on Crate0 Pallet2) belong to IG4. We
first calculate the following sets of properties:
CurrProp, = {[lifting2]}, AddProp, = {[onl]},
and Del Prop, = {][lifting2]}. Taking into account
the property space for the type crate shown in Sec-
tion 4.1, the closest PS will be [clearl, onl, atl]
because:

1. the reachable PSs from [lifting2] with a
transtion rule are [in1] and [clearl, on1, atl]

2. only [clearl, onl, atl] contains all the prop-
erties in AddProp,.

Once the most compatible PS has been selected,
the last step is to instantiate these properties
with literals. Property [onl] is instantiated with
(on Crate0 Pallet2), which belongs to IG4, and
property [clearl] is directly instantiated as it only
has one argument, which forms the literal (clear
Crate0). Then, there is only one remaining prop-
erty, [atl], which has to be instantiated with a lit-
eral added by an action that has (on Crate0 Pallet2)
and (clear Crate0) as positive effects. There are a
number of actions that add these literals: (drop
Hoist0 Crate0 Pallet2 Depot0); (drop Hoist1l CrateQ
Pallet2 Depot0); (drop Hoist2 CrateQ Pallet?2 Dis-
tributorQ); and (drop Hoist3 Crate0 Pallet2 Distrib-
utorl)). However, only the preconditions of (drop
Hoist2 Crate0 Pallet2 DistributorQ) that are not re-

lated to CrateQ are supported in I.S3. This implies
that [atl] will be instantiated with (at Crate0 Dis-
tributor0).

Once all the ISs have been computed, the prob-
lems can be solved concurrently by any STRIPS
planner. Then, the solutions obtained for these
problems are concatenated to build the final solu-
tion plan. As these problems are independent, they
can be solved simultaneously in a multiprocessor
system.

4.8. Correctness

Given that ISs represent correct states (Defini-
tion 17), a plan P; = (A, IS,-,l,IG,) to solve a
problem will be a correct plan (see Section 3.3).
However, it may be the case that after concur-
rently solving the subproblems, the actual state
reached by each subproblem (RS) differs from the
computed IS used as initial state for the subse-
quent subproblem. We say that RS and IS dif-
fer when there exists at least one object with a
different property state in each state or with the
same property state instantiated with different ar-
guments. The difference between a reached state
RS and the calculated IS is due to two factors:

1. The configuration of those objects that have
not been managed when building the IS (that
is, those objects not involved at all in the
process of building the IS) remain the same as
in IS; ;. However, it might happen that the
collateral effects (side-effects) of some action
in the sequence to achieve IG; from IS;_
would change the state of those objects. In
this case, the corresponding IS and RS will
not coincide.

2. A special case of the above situation is found
when a set of objects of the same type can
be used for the same purpose (for example,
having several trucks for transporting crates
in the depots domain). The IG does not spec-
ify which object to use to achieve its goals
and, therefore, the state of those objects will
remain the same as in 1.5;_;. However, since
the RS will reflect the actual state of these
objects, this may imply a difference between
the RS and the IS.

When the reached state and the computed IS
are not exactly the same state, subplans cannot
be concatenated because they do not form a valid

29

plan. One way to solve this difficulty is to re-
place the goal set of each subproblem by the cor-
responding IS, i.e., build subproblems as P; =
(A, IS; 1,15;). These problems are more costly to
solve since the IG is replaced by a complete world
description and solution plans are, in general, un-
necessarily long.

It is important to note that these situations in
which the reached state and the IS do not coincide
are not frequent, so introducing a general overload
in the problem resolution does not seem to be a
good idea. Another solution is to repair the plan
when necessary (the solution adopted in the exper-
iments described in Section 4.4). When we detect
a difference between the RS and the IS, we apply
a repairing process to calculate the necessary ac-
tions to reach IS from RS. The concatenation of all
the subplans plus these “repairing” subplans will
form a valid plan and, therefore, the correctness
exhibited in the sequential resolution is preserved
in the concurrent solving.

Obviously, this second solution will also pro-
duce long plans, but only when a difference be-
tween RS and IS is detected. In this case, we could
use rewriting techniques to produce better quality
plans. This is part of our ongoing work.

As for completeness, we have not experimentally
observed a difference with respect to the sequen-
tial resolution; that is, the intermediate states pro-
duced with our algorithm do not prevent the plan-
ner from obtaining the solutions to problems that
would be solved with a sequential resolution.

4.4. Experiments

In this section, we present a comparison between
the sequential (hereafter STeLLa-planner-Seq) and
concurrent (hereafter STelLLa-planner-Conc) reso-
lution of the subproblems obtained when apply-
ing STelLLa for domains where the sequential res-
olution proved to be useful (blocksworld, elevator,
logistics and depots). We also compare STelLa-
planner-Conc with the performance of the base
planners (FF, LPG, and VHPOP), SGPlan and FF-
L.

The results we present in this section attempt
to demonstrate that a concurrent resolution may
imply important time savings with respect to the
sequential resolution. We do not pay attention to
quality issues as the plans we obtain when apply-
ing the concurrent resolution are almost identi-

30

cal to those obtained when applying the sequen-
tial resolution. Time consumption in concurrent
resolution has been approximated as follows: the
time required to decompose the problem and to
combine the obtained subplans (Tgecomp) plus the
maximum between (1) the time used to solve all
problems sequentially (Tprobiems) divided by the
number of processors (n) and (2) the time used to
solve the largest problem (Thaz pr)-

T
. problems
Time = Tyecomp + Mazx (T, Traz pr

We assume that each problem is solved in a pro-
cessor, so problems that are decomposed into n
problems need n processors as maximum. This cal-
culation provides an idea of the minimum time re-
quired to concurrently solve a partitioned problem
and help determine in which cases it is worth using
a concurrent resolution.

Figure 17 shows a comparison between STelLa-
planner-Seq and STelLa-planner-Conc using FF,
LPG, and VHPOP as base planners. These charts
are interpreted the same way as those in Section
3.4, where the X and Y axes represent the results
obtained with STelLlLa-planner-Seq and STelLa-
planner-Conc, respectively. It can be observed that
the concurrent resolution is, in most cases, better
than the sequential resolution. This means that the
concurrent resolution of all the subproblems makes
up for the overload caused by the IS calculation
and the repairing process (if necessary).

Table 6 shows a comparison between FF, LPG,
and VHPOP when solving the original problem and
when they are used as base planners in the sequen-
tial and in the concurrent resolution. Table 7 shows
a comparison between STelLLa-FF (sequential and
concurrent resolution), SGPlan and FF-L. In all
cases, values represent the average time used by
all configurations to solve the same set of problems
(that is, we only took into account those problems
solved by all configurations). In general terms,
STelLLa-planner-Conc shortens the difference be-
tween STelLa-planner-Seq and the corresponding
base planner, as expected from the results shown
in Figure 17. That is to say, in the domains where
STelLa-planner-Seq obtained a worse result than
the base planner, STelLLa-planner-Conc still did not
perform better although this difference was much
smaller. However, there are some notable cases
such as the logistics domain, where only STelLa-
FF-Conc obtained a better performance than FF

(and the same occured with STel.La-VHPOP-Conc
and VHPOP). It is also noticeable that the dif-
ference in the depots domain between STella-
planner-Seq and STelLa-planner-Conc was due to
two instances for which STelLLa spendt an unusual
amount of time (Figure 17).

In conclusion, we can affirm that the concurrent
resolution allows STelLLa to obtain comparable re-
sults in terms of performance with several state-of-
the-art planners. This, together with the good re-
sults obtained in terms of solution quality that are
shown in Section 3.4, makes STelLa an excellent
technique for decomposing planning problems.

5. Conclusions and further work

Decomposition techniques have not been widely
used in planning because of the difficulty of decom-
posing a problem into separate and independent
subproblems. In highly interactive domains, parti-
tioned problems cannot be solved without devot-
ing great effort to gathering together the solution
plans of the different subproblems. In this paper,
we have presented a new decomposition technique
for STRIPS domains, STel La, which does not have
the same difficulties as other decomposition tech-
niques. STeLLa applies a chronological decomposi-
tion and obtains a sequence of problems that can
be solved without interleaving the goals that arise
in the separate subproblems. In fact, the inherent
interactions among different subgoals are used by
STelLa to decompose the problem. This technique
is based on the notion of landmark. Landmarks
are ordered and grouped together into different or-
dered intermediate goals, which correspond to the
goal sets of the new problems. Under this sequen-
tial resolution scheme, the experiments give rise
to two important conclusions: a) hard problems
that were not solved by a specific planner became
affordable when the decomposition technique was
applied; as a whole, planners were able to solve
more problems when using STeLLa and b) the qual-
ity of the solution plans was not lower in the parti-
tioned problem; in many problem instances, it was
even improved.

Once the benefits of applying STelLLa were ex-
perimentally proven, we proceeded to exploit the
technique by providing a concurrent resolution
scheme. The idea is to complete the initial state of
each problem, which is inferred from the state that

1e+07 T T
Blocksworld domain
A
1e+06 |
H a
o o &
— 100000 1
3
E
@
E
IS
& 10000 B
3
«
=}
°
e
12 1000 1
100 E
STeLla-FF X
STelLla-LPG [
STelLLa-VHPOP A
10 1 1 1 1 h N
0 100000 200000 300000 400000 500000 600000 700000
STelLa-conc - Time (ms.)
100000 T
Logistics domain
O
Z 10000 | DE%XD’:;NMX XA
E
IS
g
3
«
=}
°
e
12} 1000 1
STeLla-FF X
X STella-lPG [
100 1 1 1 1 1 1 1 I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
STelLa-conc - Time (ms.)
100000
Depots domain
O
o O
— 10000 | - o 1
s o -
E
iE
o
3 X
4 X
5
o
o
e
7S]
STella-FF X
))))) STeLLa'Lf’G]
10000 20000 30000 40000 50000 60000 70000

STelLa-conc - Time (ms.)

31

1e+07 3
Elevator domain
L 23 as .
16406 A AN A
= 100000 1
3
£
@
E
£
& 10000 E
b
L]
3
2 i
2
@ 1000 1
100 k|
STellaFF X
STellalPG [
STelLa-VHPOP &
10 i
5000 10000 15000 20000 25000 30000
STelLa-conc - Time (ms.)
16406 T T T
A A
Logistics domain 'Y A N
Vs
Y A
100000 “e T
vy — e
z r 3
£
e a
£ P
& 10000 F E
4 e
3 Y
2 !
@ /
A\
10005 E
L
4
STelLa-VHPOP A
100 h I
0 20000 40000 60000 80000 100000 120000 140000
STelLa-conc - Time (ms.)
16406
Depots domain
A
e - - A
100000 £ E
Z o
£
Y '
2 y
S A/
5 10000 & E
ooy
g iy
@ -
2 r
1000 E
4
-~
STelLa-VHPOP A
100 h :
0 50000 100000 150000 200000 250000 300000 350000

STelLa-conc - Time (ms.)

Fig. 17. Comparison between STeLLa when solving the subproblems sequentially and concurrently with FF, LPG, and VHPOP
as base planners in the blocksworld, elevator, logistics and depots domains.

would be reached after solving the preceding goal
set. Although concurrent STelLLa does not outper-
form other state-of-the-art planners (due to the
parsing time devoted to each subproblem, among
other reasons), important time savings were ob-
tained with respect to the sequential mechanism.

As a conclusion we can affirm that there are
several differences between STelLa and other de-
composition approaches. Firstly, the technique for
construction of the IGs and for handling cycles in

the LG; secondly, the architecture of STelLa which
allows different planners to be easily plugged into
the framework and, thirdly, the use of state com-
pletion technique to support concurrent resolution
of goals.

For future work, we are working on two different
lines of research. One of them is to work on a re-
laxation of the landmark definition to obtain not
only literals that appear in all solution plans, but
also literals that appear in plans that are consid-

32

Planner Blocksworld Elevator Logistics Depots
FF 2.09 0.08 1.91 8.23
STel La-FF-Seq 16.27 2.51 1.92 1.1
STelLa-FF-Conc 14.33 1.58 1.6 7.46
LPG 19.54 0.14 0.68 8.36
STelLLa-LPG-Seq 11.65 7.57 2.76 5.01
STelLa-LPG-Conc 5.2 1.76 1.77 6.09
VHPOP 12.29 7.8 47.14 5.85
STelLLa-VHPOP-Seq 0.19 2.59 95.88 0.36
STelLLa-VHPOP-Conc 0.12 0.34 17.93 0.25

Table 6

Average time (secs.) required to solve the problems of each domain by using FF, LPG, and VHPOP and when these planners
are combined with STelLLa solving the subproblems sequentially and concurrently.

Planner Blocksworld Elevator Logistics Depots
SGPlan 22.67 0.25 3.75 24.69
STelLa-FF-Seq 0.71 2.51 1.92 1.1
STelLa-FF-Conc 0.48 1.58 1.6 7.08
FF-L 6.95 0.62 0.96 0.61
STel La-FF-Seq 8.9 2.51 1.92 1.05
STelLa-FF-Conc 7.74 1.58 1.6 7.47
Table 7

Average time (secs.) required by STeLLa-FF, SGPIlan, and FF-L to solve the problems of each domain.

ered to be of good quality. This will bring the ad-
vantage of being able to obtain intermediate goals
for problems that are not currently decomposable.
The other line of research is to apply STelLLa de-
composition to temporal planning problems.

Acknowledgements

This work has been partially funded by the
Spanish government CICYT project TIC2002-
04146-C05-04, by the Valencian government project
GV04A-388 and by the UPV project 20020681.

The authors wish to thank Maria Fox and Derek
Long for providing the TIM API and also for mod-
ifying it to facilitate the access of STelLLa to prop-
erty states functions. We are also very thankful to
Joerg Hoffmann and Julie Porteous for the ideas
introduced in the landmarks theory which have
been later used to develop our decomposition tech-
nique. We finally wish to thank the anonymous re-
viewers for their comments which were very helpful
to improve the paper.

References

[1] J.L. Ambite and C.A. Knoblock. Planning by rewrit-
ing: efficiently generating high-quality plans. In 14th
National Conference on Al 1997.

[2] F. Bacchus. AIPS-2000 competition
Technical report, University of Toronto,
http://www.cs.toronto.edu/aips2000/.

[3] F. Bacchus and Q. Yang. Downward refinement and

the efficiency of hierarchical problem solving. Artificial
Intelligence, 71:43-100, 1994.

[4] A.Blum and M. Furst. Fast planning through planning
graph analysis. Artificial Intelligence, 90(1-2):281-300,
1997.

[5] B. Bonet and H. Geffner. Planning as heuristic search:

New results. In 5th European Conf. on Planning
(ECP-99), 1999.

[6] B. Clement and E. Durfee. Top-down search for co-
ordinating the hierarchical plans of multiple agents.
In Third International Conference on Autonomous
Agents, pages 252-299, 1999.

[7] D. Corkill. Hierarchical planning in a distributed en-
vironment. In 6th International Joint Conference on
Artificial Intelligence, 1979.

[8] K. Currie and A. Tate. O-plan: the open system archi-
tecture. Artificial Intelligence, 52:49-86, 1991.

results.
2000.

(9]

(10]

(11]

(12]

(13]

(14]

(16]

(17]

(21]

(22]

(23]

S. Das, P. Gonsalves, R. Krikorian, and
W. Truszkowski. Multi-agent planning and scheduling
environment for enhanced spacecraft autonomy. In 5th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 1999.

K. Decker and V. Lesser. Generalizing the par-
tial global planning algorithm. International Journal
of Intelligent and Cooperative Information Systems,
1(2):319-346, 1992.

K. Decker, V. Lesser, and M.V.Nagendra Prasad.
Macron: an architecture for multi-agent cooperative in-
formation gathering. In Conference on Information
and Knowledge Management. Workshop on Intelligent
Information Agents, 1995.

M.E. Desjardins and M.J. Wolverton. Coordinating
planning activity and information flow in a distributed
planning system. Al Magazine, pages 45-53, 1999.

J. Dix, H. Munoz-Avila, D.Nau, and L. Zhang. IM-
PACTing SHOP: Putting an Al planner into a multi-
agent environment. Annals of Mathematics and Al,
2002.

E. Durfee and V. Lesser. Partial global planning: a
coordination framework for distributed hypothesis for-
mation. IEEE Transactions on Systems, Man and Cy-
bernetics, 1(1):63-83, 1991.

M. Fox and D. Long. The automatic inference of state
invariants in TIM. Journal of Artificial Intelligence
Research, 9:367-421, 1998.

M. Fox and D. Long. Hybrid STAN: Identifying and
managing combinatorial sub-problems in planning. In
Proceedings of IJCAI’01, pages 445-452, 2001.

M. Fox and D. Long. Domains and results of
the third international planning competition, 2002.
http://www.dur.ac.uk/d.p.long/competition.html.

M. R. Garey and D. S. Johnson. Computers and In-
tractability: o guide to the theory of NP-completeness.
W. H. Freeman and Company, San Francisco, 1979.
A. Gerevini and L.K. Schubert. Discovering state con-
straints in DISCOPLAN: Some new results. In 17th
Nat. Conf. on Artificial Intelligence (AAAI’2000),
2000.

A. Gerevini and I. Serina. LPG: a planner based on
local search for planning graphs. In AIPS’02. AAAI
Press, 2002.

J. Hoffmann. Extending FF to numerical state vari-
ables. In ECAI’02, pages 571-575. I0S Press, Amster-
dam, 2002.

J. Hoffmann. Local search topology in planning bench-
marks: A theoretical analysis. In AIPS’02, 2002.

J. Hoffmann and B.Nebel. The FF planning system:
Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253-302, 2001.
J. Hoffmann, J. Porteous, and L. Sebastia. Ordered
landmarks in planning. Journal of Artificial Intelli-
gence Research, 22:215-287, 2004.

M. Iwen and A. Mali. Automatic problem decomposi-
tion for distributed planning. In International Confer-
ence on Artificial Intelligence (IC-AI’2002), volume 1,
pages 411-417, 2002.

(26]

(27]

(28]

(29]

38

(39]

[40]

[41]

42]

(43]

33

M. Iwen and A. Mali. Distributed graphplan. In 14th
IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI’2002), pages 138-145, 2002.
K. Knight. Are many reactive agents better than a few
deliberative ones? In 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 432-437,
1993.

C. A. Knoblock. Generating Abstraction Hierarchies
- An automated approach to reducing search in plan-
ning. Kluwer, Dordrecht, Netherlands, 1993.

J. Koehler and J. Hoffmann. On reasonable and forced
goal orderings and their use in an agenda-driven plan-
ning algorithm. Journal of Artificial Intelligence Re-
search, 12, 2000.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopou-
los. Extending planning graphs to an ADL subset. In
ECP’97. Springer LNAI, 1997.

R. Korf. Planning as search: a quantitative approach.
Artificial Intelligence, 33:65-85, 1985.

A. Lansky. Scope and abstraction: Two criteria for
localized planning. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence,
pages 1612-1619, 1995.

D. Long and M. Fox. Efficient implementation of the
plan graph in STAN. Journal of Artificial Intelligence
Research, 10:87-115, 1999.

D. Long and M. Fox. Automatic synthesis and use
of generic types in planning. In 5th Conference on
Artificial Intelligence Planning Systems, pages 196—
205, 2000.

A. Mali and S. Kambhampati. Distributed planning.
The Encyclopaedia of Distributed Computing, 1999.
D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. Shop:
Simple hierarchical ordered planner. In 16th Interna-
tional Joint Conference on Al, pages 968-975, 1999.
J. Porteous, L. Sebastia, and J. Hoffmann. On the ex-
traction, ordering, and usage of landmarks in planning.
In Recent Advances in Al Planning. ECP’01. Springer
Verlag, 2001.

I. Refanidis and I. Vlahavas. The GRT planning sys-
tem: backward heuristic construction in forward state-
space planning. Journal of Artificial Intelligence Re-
search, pages 15:115-161, 2001.

E. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, pages 5:115-135, 1974.
B. Srivastava. Realplan: Decoupling causal and re-
source reasoning in planning. In 17th National Con-
ference on Al, pages 812-818, 2000.

B. W. Wah and Y. Chen. Constrained partitioning
in penalty formulations for solving temporal planning
problems. Artificial Intelligence, 2004 - to appear.

D. E. Wilkins. Practical Planning: Fztending the Clas-
sical AI Planning Paradigm. Morgan Kaufmann Pub-
lishers Inc., 1988.

B. W. Wah Y. Chen and C. Hsu. Temporal planning
using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Research, 2005 - to
appear.

34

[44] Q. Yang. Intelligent Planning. A Descomposition and
Abstraction Based Approach. Springer-Verlag. Berlin,
Heidelberg, 1997.

[45] H. Younes and R. Simmons. On the role of ground
actions in refinement planning. In Proceedings of the
Sizth Int. Conference on Al Planning and Scheduling
(AIPS’02). AAAI Press, 2002.

