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Abstract. State-of-the-art planners need to use different strategies to cope with the increasing
complexity of realistic planning problems. These strategies tend to simplify the problem to make
it more affordable. The separation of the planning and scheduling parts, the relaxation of the
original problem, the application of heuristics, etc. are usual in modern planning. In this paper, we
present an ongoing approach that divides the planning process into two consecutive stages. First, a
sequential plan is generated by discarding the numeric conditions/effects of actions, thus ignoring
the scheduling part of the problem. Second, this plan is parallelised while the satisfaction of numeric
constraints is guaranteed, thus taking the scheduling part of the problem into account. Both stages
use heuristic estimations calculated through a relaxed version of a planning graph that help reduce
the search space.

1 Introduction

AI planning research has traditionally aimed at solving realistic problems. In this research line, last decade
might be considered as the beginning of a new era for AI planning. Many of the traditional simplifications
imposed to cope with realistic problems that have remained unaltered through many years have started
to disappear. Planning graphs, satisfiability, local search, constraint satisfaction, model checking and
heuristic techniques have been widely used to significantly improve the performance of the planning
algorithms, thus allowing them to deal with more realistic capabilities, such as a richer action model
that considers time, numeric variables, resources and multi-optimisation criteria [1–11]. In fact, currently
the development of appropriate benchmarks for planning requires a considerable effort to reflect real
application scenarios, such as domains for logistic problems, ground traffic on airports, space applications
and control of satellites, etc. (see [12] and the IPC–04 domains1 for more application examples). However,
as the problems become harder and more complex, the difficulties to solve them become harder as well,
and the algorithms need to come up with new strategies and techniques to enhance their performance.
Modern planners, like most that participated in last IPC–04, use techniques that tend to simplify the
original problem to reduce its complexity in different ways:

1. Separation of the planning and scheduling parts of the original problem, or at least, separation of the
planning aspects from the domain modeling activities. The goal is to devote the planning effort in the
efficient construction of plans and to use a specific scheduler to check whether the plan is schedulable
or not [13, 14].

2. Relaxation of the problem constraints and use of heuristics. Generally, this technique builds a relaxed
version of a planning graph that does not consider negative effects nor mutex relations and uses

1 More information about the domains of the last International Planning Competition 2004 in
http://ipc.icaps-conference.org



it to extract heuristic estimations based on distance to the goals, action cost, numeric values, etc.
Moreover, the actions of the relaxed plan can also be used as a part of the solution plan. Hence,
the main goal is to guide the heuristic search to the goals, avoiding the exploration of irrelevant
actions/states [1, 15–23].

3. Utilisation of preprocessing techniques to speed up the planning process. The goal is to extract as much
information as possible from the domain or problem structure: causal graphs, heuristic estimations,
possible orderings, mutex relations, relevant actions, etc. [6–8, 10, 11, 13, 22, 23].

4. Detection and automatic learning of macro-actions. The goal is to reduce the planning effort by
identifying and exploiting abstraction, action grouping and sequences (plan prefixes), thus helping
reduce the search space (states change in a faster way and many intermediate states are skipped) [15,
24, 25].

5. Decomposition or reduction of the original problem. The goal is to create a reduced instance of the
problem, solve it and then use the knowledge on the solution to assist when solving the original
problem [16]. Similarly, partitioning the original problem into subproblems and solving them inde-
pendently also shows effective: the detection of orderings among subgoals/actions, landmarks and
global constraints is useful for more efficient planning [17–19, 26].

This paper presents an ongoing approach based on the work proposed in [27] that uses some of the
first three previous techniques to deal with numeric variables (including time) in multiobjective planning.
First, it disjoins the planning part from the scheduling one. The underlying idea is to separate the
structural (propositional) part of the plan from the part dedicated to resource usage (numeric variables
and resource management). Second, the process to find a plan has also been divided into two stages:
i) generation of a sequential plan without considering numeric conditions/effects; and ii) parallelisation
of this plan, including new actions to satisfy the numeric (resource) constraints. In both cases, heuristic
estimations calculated through a relaxed version of a planning graph are used. These estimations allow
to guide the search, whose search space is also reduced due to the fact that a process that calculates
the irrelevant actions removes actions that are not necessary in the plan. Third, no mutex calculus is
performed while planning. The mutex information is directly provided by TIM [28], a fully automatic
system that extracts information about the structure of the domain and problem, as a preprocessing
stage. Therefore, the algorithm uses a lazy schema of mutex, which are only calculated between actions
that are about to interact. Consequently, no effort is wasted in the mutex calculus between actions which
will not interact in the plan. This approach has some nice advantages:

– A sequential plan is calculated more easily than a parallel one. Clearly, no overlapping nor mutex
relations have to be taken into consideration when actions are serially planned. Although there is no
guarantee about the optimality of such a plan, its quality can be improved by means of an anytime
behaviour.

– Some unsolvable situations can be detected more quickly. Those cases where the plan has no solution
because propositional goals are unfeasible can be detected before starting to explore other (numeric)
actions that deal with resources and have no influence in the problem solvability.

– After finding a feasible sequential plan, a lower bound can be easily derived to help the parallelisation
process. Obviously, the precision degree of this bound depends on the problem metric to be optimised.
For instance, in cases where the problem metric only represents the makespan, this bound will not be
very informative (the makespan of the sequential plan is usually much longer than the makespan of
the parallel plan). However, in cases where the problem metric is more action-dependent, this bound
will be very precise and informative.

This paper is structured as follows. Section 2 briefly introduces the notation for expressing numeric
variables (conditions and effects) in durative actions of PDDL2.x. The two stages of this approach are
presented in sections 3 and 4; section 3 indicates the way the sequential plan is generated, whereas the
algorithms to parallelise this plan are detailed in section 4. Section 5 reviews some related work and



discusses some points about separating out the planning and scheduling (numeric) parts. Finally, section
6 provides the contributions of the paper and shows the future work.

2 Numeric variables in actions

In this paper, we use durative actions as defined in PDDL2.1 and PDDL2.2 [4, 5], with three types of con-
ditions: SCond(a), Inv(a) and ECond(a), with the conditions to be guaranteed at the start, over the exe-
cution, and end of a, respectively. In a numeric approach, each condition can be either a classical proposi-
tional condition or a numeric condition that expresses a constraint as a tuple 〈f-exp1,binary-comp,f-exp2〉,
where f-exp1 and f-exp2 represent functional expressions (which may contain numeric variables), and
binary-comp ∈ {<,≤, =, >,≥} is a binary comparator. Additionally, durative actions have two types of
effects: SEff(a) and EEff(a), with the effects to be asserted at the start and end of a, respectively.
Each effect can be either a positive (SAdd(a), EAdd(a)) or negative (SDel(a), EDel(a)) propositional
effect or a numeric effect as a tuple 〈f-head,assign-op,f-exp〉, where f-head represents a numeric
variable, and assign-op ∈ {:=, + =,− =, ∗ =, / =} is an assignment operator which updates the value
of f-head according to the functional expression f-exp.

(:durative-action fly

:parameters (?a - aircraft ?c1 ?c2 - city)

:duration (= ?duration (/ (distance ?c1 ?c2)

(slow-speed ?a)))

:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a)

(* (distance ?c1 ?c2) (slow-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (increase total-fuel-used

(* (distance ?c1 ?c2) (slow-burn ?a))))

(at end (decrease (fuel ?a)

(* (distance ?c1 ?c2) (slow-burn ?a))))))

(:durative-action refuel

:parameters (?a - aircraft ?c - city)

:duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))

:condition (and (at start (> (capacity ?a) (fuel ?a)))

(over all (at ?a ?c)))

:effect (at end (assign (fuel ?a) (capacity ?a))))

Fig. 1. Two typical actions of a logistics domain.

Fig. 1 shows an example of two actions (fly and refuel) of a logistics domain. fly requires the
aircraft to be at the origin (propositional condition), but also to have enough fuel to perform the flight
(numeric condition). On the other hand, fly makes the aircraft to be at the destination (propositional
effect), increases the variable total-fuel-used and decreases the level of fuel of the aircraft (numeric
effects). Similarly, refuel has both propositional and numeric conditions, but only numeric effects. A
new variable total-time, which represents the makespan of the plan, is always included by default and
modified by the field :duration present in each action. Note that this allows us to treat the duration
as any other numeric variable with no special distinction. Moreover, each planning problem can define
a multiobjective metric function to assess the quality of the plan, such as (+ (* 4 (total-time)) (*



0.005 (total-fuel-used))). Unlike planners that only try to optimise the number of planning steps,
actions or makespan, the use of this metric allows to find plans where several weighted criteria that play
an important role in the plan are also considered.

The way the numeric variables are managed in this approach consists of associating each proposi-
tion/action with a vector of tuples 〈f-headi,min valuei,max valuei〉, where f-headi is the ith numeric
variable and min valuei (max valuei) stands for the minimal (maximal) value estimated for that variable
to achieve the proposition/action (see [27] for more details).

3 Generation of a sequential plan

The goal of this stage is to generate a sequential plan that works with causal constraints but without
considering the numeric conditions and effects of actions. This plan is generated in a forward way through
a plan space search in a structure called set of plans that contains all the generated plans {Πi}. Each
Πi has two structures: Seqi that contains the actions that form the sequential plan and determine the
current state; and Relaxi that contains a relaxed plan from the current state to the problem goals. A
relaxed plan consists of a partially ordered set of actions, with no mutex considerations, connected by
causal links in which all the propositional (sub)goals hold.

1: set of plans ← empty plan with both Seqi and Relaxi empty
2: while set of plans �= ∅ do
3: extract the lowest cost Πi from set of plans
4: if Πi is a solution plan then
5: exit with success
6: else
7: Relaxi ← Relax(Πi)
8: Costi ← Cost(Πi)
9: RAi ← Relevant Actions(Πi) {relevance analysis}

10: Generate Successor P lans(Πi, RAi)

Algorithm 1: Generation of a sequential plan in a forward way.

The Algorithm 1 starts from an empty plan (step 1). Each iteration extracts the lowest cost Πi from
set of plans (step 3). If Πi is a solution plan, the algorithm outputs with success (steps 4–5). Otherwise,
the relaxed plan Relaxi of Πi is generated and its cost is calculated (steps 7–8). On one hand, the relaxed
plan is generated as usual in planning literature [7, 27], using the actions that require less actions to
be executed and have the best cost w.r.t. the problem metric. On the other hand, the cost of a plan is
heuristically calculated as: Cost(Πi) = |Seqi|+ω|Relaxi|, where |Seqi| and |Relaxi| represent the number
of actions in each structure, respectively, and ω allows to set the heuristic estimation2. Step 9 performs a
relevance analysis by means of a backward process that only selects the relevant actions RAi to achieve
the problem goals from the current state. This helps reduce the branching factor when generating the
successor plans of Πi in step 10 (see Algorithm 2).

Algorithm 2 explores all the actions aj in the relevant actions RAi, performing the real search. If aj is
directly executable in Seqi, a new plan Πj is constructed with aj (steps 1–3). Unfortunately, Seqj could
lead to a state already visited by previous plans, making the algorithm fall in an infinite loop. In order
to avoid this, the algorithm needs to check whether the state of Seqj is already memoized, discarding
Πj in such a case (steps 4–5). Otherwise, both Relax(Πj) and Cost(Πj) are calculated in steps 7–8.
The algorithm uses a Hill-climbing variation. The strategy is to record into set of plans every successor

2 Greater values of ω may find a solution faster but degrading its quality (in the current implementation ω = 3).



1: for all aj ∈ RAi do
2: if aj is executable in the current state of Seqi then
3: construct a new Πj from Πi, with Seqj ← Seqi ∪ {aj}
4: if current state of Seqj is already memoized then
5: discard Πj

6: else
7: Relaxj ← Relax(Πj)
8: Costj ← Cost(Πj)
9: if (Costj ≤ Costi) ∨ (Costj = min(Cost(Πk))

∀Πk

) then

10: set of plans ← set of plans ∪ {Πj}
11: memoize current state of Seqj

Algorithm 2: Generate Successor P lans(Πi, RAi).

Πj | Cost(Πj) ≤ Cost(Πi), or the successor with minimal cost if all the successors have worse cost than
Cost(Πi) (steps 9–10). Finally, step 11 memoizes the current state of Seqj to avoid future loops.

The output of this stage is either a sequential plan that is propositionally sound, or failure. Intuitively
in the former, the plan would be directly executable in a scenario without numeric variables, conditions
and effects, such as a pure-STRIPS planning problem. Unfortunately, since Algorithm 2 is not complete
(clearly, steps 9–10 do not record all the successor plans) there is no completeness guarantee. There exists,
however, an important advantage here. If the problem is propositionally unsolvable, i.e. there are some
propositional (sub)goals that cannot be simultaneously satisfied, this stage outputs that no feasible plan
can be found. It must be noticed that this is stated before analysing numeric actions, which make the
search space larger and have a negative impact in the algorithm performance, but have no influence in
this kind of problem solvability.

Furthermore, this sequential plan provides the planner with an initial lower bound that can heuris-
tically help the plan parallelisation stage. The quality of this bound highly depends on the problem
metric and it can be more or less informative according to the criteria used. Particularly, problems where
makespan plays an important role in the metric lead to bad informative bounds: makespan of a sequential
plan is not representative for the same plan after being parallelised. On the contrary, problems where
metric focuses on more action-dependent criteria, such as execution cost, fuel consumption, data stored,
etc., provide good indicators on the quality of the plan, both in its sequential and parallel versions.

4 Plan parallelisation and satisfaction of numeric constraints

The goal of this stage is to put the actions of the sequential plan in parallel, including the necessary actions
to satisfy the numeric constraints. Although there exist some algorithms to parallelise plans and to reorder
actions within plans [29–31], the approach presented here cannot use them in a straightforward way. The
critical difference relies on the initial plan to be parallelised; traditional research focuses on generating
a parallel plan using as a basis an executable partial or total plan. This means that all the (sub)goals
hold, and only a better ordering among actions is required. On the contrary, the initial plan used in this
approach could have unsolved conditions that must be solved before the plan can become executable.
Consequently, this stage also needs to include a search procedure for these situations.

As in the previous stage, a structure set of plans is required to store the plans {Πi}. Now, each Πi is
extended with a new structure called Alloci, which contains the actions that have been allocated in time
and determine the current state. It is important to note that once an action is inserted into Alloci, it will
never be removed. For simplicity, let us assume that actions in Seqi are in the form 〈a1i, a2i, a3i . . .ani〉.



1: set of plans ← Πi, generated by Algorithm 1 {Alloci is initially empty}
2: while set of plans �= ∅ do
3: extract the lowest cost Πi from set of plans
4: if Πi is a solution plan then
5: exit with success
6: else
7: for all aji ∈ Seqi

j=1..|Seqi|
not allocated yet do

8: T
a
j
i
← Find Execution T ime(aji, Seqi, Alloci)

9: if a
j
i is executable in the current state of Alloci at time T

a
j
i
then

10: Alloci ← Alloci ∪ {aji} {aji is inserted at time T
a
j
i
}

11: mark a
j
i as allocated

12: else
13: for all numeric action bk that makes a

j
i executable do

14: construct a new Πk from Πi, with Seqk ← {bk} ∪ Seqi

15: set of plans ← set of plans ∪ {Πk}
16: go to step 2

Algorithm 3: Plan parallelisation and satisfaction of numeric constraints.

Algorithm 3 starts with the sequential plan generated in Algorithm 1 (step 1). Each iteration extracts
the lowest cost3 Πi and checks if it is a solution plan (steps 3–5). If Πi is not a plan solution, step 7
tries to allocate the actions in Seqi. Step 8 (see Algorithm 4) finds the earliest time Ta

j
i

when action aji

could start in Alloci. If aji is executable in Alloci at time Ta
j
i
, it is inserted into Alloci and marked as

allocated (steps 9–11). If aji is not executable (because its numeric conditions are not satisfied), steps
13–15 insert new numeric actions bk that make it executable, constructing new plans and inserting them
into set of plans. Next, step 16 goes back to step 2 to resume the process with another plan.

1: if Alloci = ∅ then
2: return 0 {aji is the first action to be allocated}
3: else
4: T ← end time of the latest action aki that has a causal dependency aki −→ a

j
i

k=1..j−1

5: if a
j
i is not mutex at time T with any other action present in Alloci then

6: return T
7: else
8: return earliest time T ′ > T when a

j
i is not mutex with any other action present in Alloci

Algorithm 4: Find Execution T ime(aji, Seqi, Alloci).

Intuitively, Algorithm 4 returns the earliest start time when action aji could start. This time is 0
when Alloci is empty (steps 1–2). If there exist allocated actions aki that achieve conditions of aji (causal
dependency), the return value is the end time T of the latest aki if no mutex4 is present in Alloci at that
time (steps 4–6). The most complex case occurs when aji is mutex in Alloci at time T . In this case, the
return value is the earliest T ′ > T when aji is not mutex in Alloci (step 8).
3 Unlike Algorithms 1–2, Cost(Πi) is now calculated by evaluating the actions in Alloci and Relaxi in the problem

metric.
4 Mutex information is calculated in a preprocessing stage by TIM [28]. Therefore, it is not necessary to perform

any mutex calculus or propagation while planning actions.



This stage returns a parallel plan that may contain numeric actions, or failure. The previous algorithms
cannot guarantee the completeness and optimality properties. Furthermore, the sequential plan might not
be properly parallelised if no numeric actions are available to satisfy the numeric conditions. For instance,
let us suppose that the available level of fuel for an aircraft is limited (no refuel action is available or
it must be planned in a very distant city). If the aircraft runs out of fuel in a journey, the algorithm will
not be able to find an executable plan to move the aircraft to the city to refuel and eventually, it will
return failure.

5 Related work and discussion

Traditionally, researchers have found many difficulties to cope with realistic problems: how to model and
define all the features of the problems, how to use the problem definition directly in the algorithms,
how to improve the performance of these algorithms with planning techniques, how to integrate ad-hoc
intelligent knowledge into these techniques, etc. Fortunately, last advances in planning algorithms have
allowed the development of modern planners that overcome many of these difficulties. Currently, most
state-of-the-art planners use heuristic techniques to guide the search process when finding the plan. The
way they extract the heuristic information is quite similar in all of them: they usually build a planning
graph without considering negative effects nor mutex relations [1, 2, 7, 8]. However, the way they apply
this heuristic information differs from ones to others [3, 6, 7, 9].

Some researchers have tried to solve the planning problems as are, i.e. with both the planning and
scheduling components. For instance, GRT-R and MO-GRT [9, 10] do not make any separation in the
problem, but they enrich the heuristic estimations with information on resource consumption. metric-FF
[8] follows the same heuristic line, relaxing the delete effects to numeric variables but considering the
numeric conditions in the estimations to improve their informedness. However, temporal problems and
durative actions do not fit well in the sequential approach of metric-FF. LPG [6] is based on stochastic local
search techniques to move throughout the search space, but again no special distinction is done between
planning and scheduling (the heuristic estimations also include the numeric information). YAHSP [18]
extends the heuristics presented in FF [7], computing and using lookahead states and plans to improve
the search strategy, but it does not solve temporal problems.

On the other hand, nearly the whole number of the planners that participated in the last IPC–2004
tend to simplify the original problem to make it easier and, consequently, more affordable. One alternative
widely used is to identify and explore any kind of abstraction (macro-actions, meta-action sequences, state
grouping, etc.), as used in Macro-FF and FAP [15, 24]. Planning decomposition is also useful to create
reduced versions of the original problem, or subproblems which are solved independently, that will assist
with solving the original problem (Marvin, SGPlan and Fast (Diagonally) Downward [16, 17, 22]). Other
alternatives are more similar to the work presented in this paper: i) separating out the planning and
scheduling parts of a planning problem (CRIKEY [13]), and ii) finding a sequential version of a plan that
is later parallelised (P-MEP [23]). The advantages of doing this are twofold. First, the original search is
divided into two stages. This shows effective because each stage involves a smaller search space than that
of the original problem, as marked in [17]. Particularly, a sequential search proceeds in a more efficient
way than a parallel one. Next, the process of parallelising a sequential plan is easier than generating a
parallel plan from scratch. Second, different heuristic techniques can be used in each stage: i) planning-
oriented heuristics, to find a sequential plan in a fast way trying to optimise the length of the plan; and ii)
quality-oriented heuristics, to find a good schedulable parallel plan taking into consideration the problem
metric defined by the user. However, this is not a drawback-free approach. Commonly, these two types
of heuristics are conflicting; shorter plans are more expensive in terms of the problem metric. And it
might be even worse. A good sequential plan may be impossible to be parallelised, and without feedback
from one stage to the other, the problem turns unsolvable. Consequently, no completeness nor optimality
properties can be guaranteed.



An additional drawback comes directly from the way the domain is defined. It is relatively easy
to automatically discard the numeric variables in action conditions/effects when finding a sequential
plan, and include them again when parallelising it. However, the domain modeller may choose to re-
place these variables with propositional predicates. For instance, function (fuel ?aircraft)∈ R may
be replaced with predicate (fuel ?aircraft ?level), where ?level has the propositional domain
{level1,level2,. . .leveln}. In such a case, it is not easy nor intuitive to detect the actions that deal
with resources and the separation into two stages has no beneficial effect.

6 Conclusions and future work

Typically, there are two key factors that determine the fulfillment of a plan: i) the actions that form the
plan, and ii) the execution times of these actions. This paper has presented an extension of the approach
proposed in [27] as part of an ongoing work that attempts to split a planning problem into which actions
are going to be used and when. The main idea is to separate the planning part (ordering and causal
constraints) from the scheduling part (numeric variables that usually involve resources) to solve realistic
planning problems. As discussed in section 5, this separation depends on the domain definition, but if
possible can help improve the search process. Hence, the main contributions of this paper have been the
description of:

– The basic idea to separate the planning and scheduling (management of numeric variables) parts in a
planning problem. This separation is trivial because it just consists of ignoring the numeric conditions
and effects.

– A first stage that generates a sequential plan in a forward way. This stage focuses on the structural
part of the plan, dealing with causal constraints and dependencies to solve the (sub)goals. The idea
is to focus the planning effort on finding a more general plan, postponing the reasoning on numeric
variables and actions. The algorithm uses a heuristic based on the length of the sequential+relaxed
plans in a Hill-climbing variation. Additionally, it performs a simple relevance analysis in a backward
way that helps reduce the branching factor.

– A second stage that parallelises the sequential plan. While it tries to allocate the actions as early
as possible to compact the plan, it includes the necessary numeric actions to satisfy the numeric
conditions. Now, the heuristic focuses on the problem metric instead of the length of the plan. The
main disadvantage here is that a sequential plan might not be parallelised because of the lack of
numeric actions to satisfy the numeric conditions.

This work has not been finished yet (some implementation tasks, mainly in the parallelisation stage,
are still left) and some ideas on the definition and use of heuristics are not mature enough. Therefore,
we cannot provide experimental results in the paper yet, which obviously are part of the current and
future work. We are also interested in the development and application of new heuristic techniques in
both stages, which can lead to some improvements in the quality of the final plan, and how more complex
temporal constraints should be included in this approach.
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