
A Planning Approach to Deal with Numeric Variables in

Multiobjective Planning

Antonio Garrido† and Derek Long‡

† Universidad Politécnica de Valencia, Valencia (Spain)
‡ University of Strathclyde, Glasgow (UK)

agarridot@dsic.upv.es derek.long@cis.strath.ac.uk

Abstract. Planning problems have been traditionally expressed by a propositional representation.
However, this representation is not adequate to express numeric variables when modeling real-
world continuous resources, such as fuel consumption, energy level, profit, etc. This paper presents
our ongoing work to build a planner with capabilities for numeric variables, including duration
on actions, and multiobjective optimisation to manage level 3 durative actions of PDDL2.1. Our
approach consists of two stages. First, a spike construction process estimates the values of the
variables associated to propositions/actions. Unlike other approaches, we do not relax numeric
effects in the calculus of the estimation, but only numeric conditions. Second, a heuristic search
process generates a relaxed plan according to the estimations of the first stage, and then performs
search in a plan space. The relaxed plan and the heuristic estimations help the process find a plan
while trying to optimise the multiobjective criterion.

1 Introduction

Planning problems have been traditionally expressed by means of a purely propositional representation
based on STRIPS [1] and its successors [2, 3]. However, this representation is not always enough to ex-
press real-world problems, particularly in problems which involve time, i.e. actions with duration, and
continuous resources [4, 5]. In a propositional representation, Graphplan’s planning graph [6] has become
tremendously useful to estimate when propositions/actions are given [7–9]. Furthermore, this graph can
be generated in polynomial complexity (both in time and space) under such a representation, where
propositions/actions have binary domains (true or false).

Nevertheless, when dealing with time explicitly stored in the graph levels, the planning graph becomes
more complex. Now, the levels are not longer equidistant and the number of levels is significantly increased
[10]. More complex is indeed the fact of dealing with numeric variables, such as fuel consumption, energy
level, pollution level, distances, profit, etc., where the domain of the variables is usually continuous,
i.e. formed by values in R. In this case, a traditional planning graph cannot be directly used because
the conditions of the actions may impose complex constraints (inequalities) on these variables, such as
(fuel plane) ≥ 100, (available-space truck) > 50, (distance) ≤ 20, etc. Analogously, effects
of the actions may modify these values in many ways, such as increase (fuel plane) 10, decrease
(available-space truck) 5, scale-up (profit) 1.5, etc.

Some researchers have exploited the argument of relaxing the planning graph by ignoring the delete
effects to heuristically estimate and manage numeric variables. For instance, in GRT-R [11], the resource
consumption of the actions is used as an additional cost of the heuristic function. In MO-GRT [5], numeric
variables are used to cope with multiobjetive heuristic planning. Sapa [12] and TP4 [13] use the resource
consumption to assess the necessary increment in the heuristic value that estimates the length of the
plan. Unlike these planners, metric-FF [4, 14] also considers the numeric conditions of the actions, but it
still ignores the decreasing effects in the heuristic estimation. Consequently, in many cases these effect
relaxing heuristics represent very optimistic estimations, far away from the real values.



In this paper, we present our ongoing work to build a planner with capabilities for numeric variables,
including duration on actions, and multiobjective optimisation to manage level 3 durative actions of
PDDL2.1 [15]. Level 3 of PDDL2.1 allows a combination of logical (propositional) and numeric features
on actions, which have local conditions and effects. This work extends and stresses on the initial ideas
for heuristic search in PDDL2.1 temporal planning of TPSYS [10, 16], and attempts to solve its main
inefficiencies and limitations.

The paper is structured as follows. Section 2 reviews the foundations of TPSYS and indicates its
main limitations. Section 3 introduces the preliminaries about expressing numeric variables in action
conditions and effects. Our approach to deal with numeric variables is presented in section 4. Section 5
discusses some points about the management of numeric variables in conditions to improve the heuristic
estimations. Finally, section 6 presents the conclusions and related work.

2 A Brief Review of TPSYS

TPSYS is a temporal planner that manages the non-conservative model of durative actions of PDDL2.1
and consists of three stages as depicted in Figure 1 [16]. Like other Graphplan-based planners, TPSYS iden-
tifies binary mutual exclusion relations between actions and between propositions. Local conditions and
effects of PDDL2.1 actions make the mutex calculus more complex because there exist different ways of
overlapping actions. Therefore, after instantiating the actions, the first stage calculates the action/action
and proposition/action static mutex relations. These mutex are static because they only depend on the
definition of the actions and, consequently, always hold. Although this calculus speeds up the remaining
stages, it entails an important inefficiency. In problems with hundreds or thousands of actions, a lot of
effort is wasted calculating the mutex between actions which in the plan never interact.

The second stage incrementally extends a temporal planning graph, alternating proposition and action
levels, and calculates the action/action, proposition/action and proposition/proposition dynamic mutex.
As in the first stage, a lot of effort is wasted in the mutex calculus between actions which will not interact
in the plan. Moreover, the different duration of the actions breaks the original symmetry of the temporal
graph and the levels are not equidistant. This entails a new indication of inefficiency. In problems where
the greatest common divisor of the durations is 1, the algorithm must generate many levels until all the
problem goals are non-pairwise mutex, thus increasing the size of the graph, the complexity of the second
stage and, subsequently, of the search.

The third stage performs the search of a temporal plan. This stage is divided into two new stages.
First, a relaxed plan (without taking any mutex into consideration) is generated in a backward chaining
way. Second, this relaxed plan is used as a skeleton to generate the temporal plan and as the basis for
calculating heuristic estimations in a forward chaining way. This stage may extend the temporal graph
as much as necessary until finding a plan, with the cost associated to the mutex calculus (see Figure 1).
In addition, the search in the third stage entails a limitation: plans are optimised only w.r.t. makespan.
No other criteria, such as resource consumption or action cost can be used, which limits the capabilities
of the planner to deal with more general real problems.

3 Preliminaries. Numeric variables in actions

This section introduces the notation for the numeric variables in actions used throughout the rest of
the paper. We use durative actions as defined in PDDL2.1, thus presenting three types of conditions: i)
SCond(a), with the conditions to be guaranteed at the start of a; ii) Inv(a), with the invariant conditions
to be guaranteed over the execution of a; and iii) ECond(a), with the conditions to be guaranteed at
the end of a. In a numeric approach, each condition can be a classical propositional condition or a
numeric condition that expresses a constraint as a tuple 〈f-exp1,binary-comp,f-exp2〉, where f-exp1
and f-exp2 represent functional expressions (which may contain numeric variables), and binary-comp



goals

satisfied?

No

Yes

plan

found?

Yes

Success

+
3.1. Relaxed

plan

3.2. Generation

of a plan

Temporal

graph extension

Failure

No

First stageFirst stage

� calculus of static

mutex

Second stageSecond stage

� temporal graph

extension

Third stageThird stage

Fig. 1. Structure of TPSYS.

∈ {<,≤, =, >,≥} is a binary comparator. Additionally, durative actions have two types of effects: i)
SEff(a), with the effects to be asserted at the start of a; and ii) EEff(a), with the effects to be
asserted at the end of a. Now, each effect can be either a positive (SAdd(a), EAdd(a)) or negative
(SDel(a), EDel(a)) propositional effect or a numeric effect as a tuple 〈f-head,assign-op,f-exp〉, where
f-head represents a numeric variable, and assign-op ∈ {:=, + =,− =, ∗ =, / =} is an assignment
operator which updates the value of f-head according to the functional expression f-exp.

Figure 2 shows the zenotravel domain with numeric conditions and effects used in the last IPC–
20021. For instance, action fly requires the plane to be in the origin (propositional condition), but also
to have enough fuel to carry out the flight (numeric condition). On the other hand, this action makes
the plane to be in the destination (propositional effect) and also increases the variable total-fuel-used
and decreases the level of fuel of the plane (numeric effects). By default, all the domains include the
variable (total-time), which represents the makespan of the plan, and that all the actions modify by
the field :duration. This way, the duration is simply treated as one of the numeric variables. Clearly,
different actions may present different numeric effects: they can be fixed for all actions of an operator,
different for each action of an operator (depending on its arguments), or even different for the same
action (depending on the state where they are applied). Let us consider for example the case of the
variable (total-time). Any action of type board always increases the same value boarding-time; a
particular action fly always increases the value (/ (distance ?c1 ?c2) (slow-speed ?a)), whereas
a particular action refuel increases the value (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)),
which depends on the current value of the variable (fuel ?a).

Although in this domain there exist many numeric variables (distance, slow-speed, fuel, etc.)
many of them are static (never affected by actions) and, consequently, not considered during plan-
ning. For instance, if we assume that there exists only one plane plane1, the numeric variables are
(total-fuel-used), (fuel plane1) and (total-time). In addition to this, each problem of the do-
main can define a multiobjective metric function to assess the quality of the plan, such as (+ (* 4

1 More information on this and other domains of the International Planning Competition 2002 in:
http://www.dur.ac.uk/d.p.long/IPC.



(:durative-action board

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration (boarding-time))

:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))

(:durative-action debark

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration (debarking-time))

:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))

:effect (and (at start (not (in ?p ?a)))

(at end (at ?p ?c))))

(:durative-action fly

:parameters (?a - aircraft ?c1 ?c2 - city)

:duration (= ?duration (/ (distance ?c1 ?c2) (slow-speed ?a)))

:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a) (* (distance ?c1 ?c2) (slow-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (increase total-fuel-used (* (distance ?c1 ?c2) (slow-burn ?a))))

(at end (decrease (fuel ?a) (* (distance ?c1 ?c2) (slow-burn ?a))))))

(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city)

:duration (= ?duration (/ (distance ?c1 ?c2) (fast-speed ?a)))

:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a) (* (distance ?c1 ?c2) (fast-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))

(at end (increase total-fuel-used (* (distance ?c1 ?c2) (fast-burn ?a))))

(at end (decrease (fuel ?a) (* (distance ?c1 ?c2) (fast-burn ?a))))))

(:durative-action refuel

:parameters (?a - aircraft ?c - city)

:duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))

:condition (and (at start (> (capacity ?a) (fuel ?a)))

(over all (at ?a ?c)))

:effect (at end (assign (fuel ?a) (capacity ?a))))

Fig. 2. Zenotravel domain with numeric capabilities used in the Time track in IPC–2002.



(total-time)) (* 0.005 (total-fuel-used))), which can either be minimised or maximised. Unlike
planners that only try to optimise the number of planning steps, actions or makespan, the use of this
metric allows to find plans where several weighted criteria that play an important role in the plan are
also considered.

4 Planning with numeric variables

In the new planning approach, the original first and second stage of TPSYS are merged into one only
stage. Unlike TPSYS, we do not generate a real temporal planning graph because the levels do not play
any role now. This allows to overcome two of the most important inefficiencies of TPSYS: i) the calculus
and propagation of many mutex, and ii) the expensive extension of a temporal planning graph. Instead
of extending a temporal graph, we generate one spike vector for propositions and one for actions, as in
STAN [17]. Consequently, the first stage performs both the instantiation of the actions through the spike
construction and the heuristic estimation of the numeric variables. Next, the second stage performs the
heuristic search of a plan, which is assessed in terms of the multiobjective metric function, thus increasing
the capabilities of TPSYS.

4.1 First stage. Spike construction and estimation of the numeric variables

The first stage uses two spikes that encode the information about propositions/actions, traditionally
stored in a planning graph, thus reducing the storage requirements. Each proposition/action is associated
with a vector of tuples 〈f-headi,min valuei,max valuei〉, where f-headi is the ith numeric variable and
min valuei (max valuei) stands for the minimal (maximal) value estimated for that variable to achieve
the proposition/action. These values are incrementally updated through the spike construction as shown
in Algorithm 1.

1: {Initialising propositions and the values of numeric variables present in the initial state Is}
2: for all p ∈ Is do
3: propositional state ← propositional state ∪ {p}
4: ∀f-headp,i, update 〈f-headp,i, value of f-headi in Is, value of f-headi in Is〉
5: {Spike construction}
6: while new actions can be applied from propositional state do
7: for all a | {SCond(a) ∪ Inv(a)} ∈ propositional state do
8: insert a in the spike of actions
9: {Estimating the values of numeric variables for the actions that can start}

10: ∀f-heada,i, update 〈f-heada,i,∪T min value(f-headpj,i

∀pj∈SCond(a)∪Inv(a)

),∪Tmax value(f-headpj,i

∀pj∈SCond(a)∪Inv(a)

)〉

11: for all p ∈ {SAdd(a) ∪ EAdd(a)} do
12: insert p in the spike of propositions (if not present)
13: propositional state ← propositional state∪ {p}
14: {Estimating the values of numeric variables for the effects}
15: ∀f-headp,i, update 〈f-headp,i,∩T

minmin effect(f-headaj,i

∀aj supporting p

),∩T
maxmax effect(f-headaj,i

∀aj supporting p

)〉

Algorithm 1: Spike construction and estimation of the numeric variables.

For each initial proposition p, the algorithm initialises the numeric variables f-headp,i with the val-
ues indicated in the initial state Is (steps 1–4). If one variable is not initialised in Is (for instance,
(total-time)), it is initialised to 0. Steps 5–15 construct the spike structure until no new actions can



be generated. For each action a that starts, step 10 estimates the minimal and maximal values of the
numeric variables as the temporal union (∪T ) of the values of the (start and invariant) conditions of a.
The operation temporal union must take into account the duality in the optimisation direction of the
variables. Consequently, ∪T is defined as the operation “max” when the variable must be minimised, and
“min” when maximised. For instance, when dealing with the variable (total-time), the estimation of
that variable for a is the maximal value of its conditions (informally, a must wait until the latest of its
conditions). On the contrary, the estimation for the variable (fuel plane1), which represents the current
fuel level of plane1, is the minimal value because a must wait until the condition with the lowest fuel
level. Analogously, step 15 estimates the minimal and maximal values of the variables for propositions
as the temporal intersection (∩T

min or ∩T
max) of the effects of their supporting actions (after applying the

assignment operators {:=, + =,− =, ∗ =, / =}). This operation is interpreted as “min” for the mini-
mal value of the variable and “max” for its maximal value. This way, each numeric variable has always
associated two values that correspond with the most optimistic and pessimistic estimations.

It is important to note a special characteristic during the estimation of the numeric variables: the
numeric conditions of actions are relaxed, but not their effects as in other approaches [4, 12–14]. The
heuristic estimation on actions is only calculated in terms of their propositional conditions. Hence, the
estimation makes a clear distinction between the logic of the plan and the constraints on the resources. In
the case of the zenotravel domain, the heuristic estimates the cost of the actions necessary to deliver the
set of people and not the requirements on resources (fuel ?a) of these actions. Intuitively, the heuristic
informs about the cost of the actions that should be executed to achieve the propositional problem goals,
but not about the cost of the actions which achieve the appropriate conditions of the resources to execute
them (i.e. the heuristic estimates the cost of actions board, debark, fly and zoom, but not refuel).

4.2 Second stage. Search of a plan

This stage is inspired by the original search of TPSYS (see Figure 1), and it is divided into two stages.
First, a backward chaining stage generates an initial relaxed plan. Second, a forward chaining stage
allocates the execution time of the actions in the relaxed plan trying to optimise the multiobjective
optimisation function.

Generation of an initial relaxed plan A relaxed plan Π is a partially ordered set of actions connected
by causal links in which both the propositional problem goals and action conditions hold. It is called
relaxed because neither mutex relationships between actions nor commitment on their execution time are
considered. Algorithm 2 shows the way to generate this plan.

1: Π ← {IS ∪ FS} {obligatory actions}
2: queue acts ← FS

3: while queue acts �= ∅ do
4: extract a from queue acts
5: for all p ∈ {SCond(a) ∪ Inv(a) ∪ ECond(a)} do
6: if p is not supported in Π then
7: b ← arg min(cost of execution of bi evaluated in the optimisation function)

∀bi which supports p

8: if b is the only action which supports p ∧ a is an obligatory action then
9: mark b as obligatory in Π

10: Π ← Π ∪ {b} {no commitment on execution time of b yet}
11: queue acts ← queue acts ∪ {b}

Algorithm 2: Generation of an initial relaxed plan Π.



The algorithm is quite straightforward and consists of making actions applicable by supporting their
conditions. All the relaxed plans contain two fictitious actions with no duration called IS and FS. IS
achieves the propositions of the initial state, whereas FS requires the problem goals. The algorithm uses
a queue of actions (queue acts), which is initialised with FS (step 2). Step 4 extracts one action a from
queue acts. For each unsupported condition of a, step 7 selects the action b with the minimal cost of
execution2. This cost is calculated by evaluating the numeric variables (estimated in the first stage) in
the optimisation function. We use the idea of obligatory action [16] to indicate that such an action must
be present in all the plans because it is the only way to support the problem goals (steps 8–9). Finally,
steps 10 and 11 insert action b into Π and queue acts, respectively.

The actions in the relaxed plan are evaluated and selected according to the estimation of their numeric
variables. Therefore, the relaxed plan aims at the logical part of the plan, i.e. the actions to achieve the
propositional goals, and not at the actions to achieve the required values of the resources. Apparently, this
distinction seems intelligent when dealing with large problems: the relaxed plan focuses on the general
structure of the plan, without taking into consideration the actions to replace the resources, which in
many cases might be unknown or irrelevant [12] in advance.

Generation of a plan. Planning and allocating actions This stage performs a plan space search
in a structure called set of plans, which contains all the generated plans {Πi}. Actions in each Πi are
divided into two disjunctive sets: Relaxi and Alloci. Relaxi contains the actions which have not been
allocated yet, and so they can be removed from Πi. Alloci contains the actions which have been allocated
in time and will never be removed from Πi. Initially, Relaxi contains all the actions in Πi (the initial Πi

is the plan computed by Algorithm 2) and Alloci is empty. Each plan Πi also contains a stack of actions
acts to allocatei with the actions to allocate in each time of executioni. acts to allocatei is initially
empty and time of executioni is initialised to 0.

The idea of this stage is to move forward in time, simulating the real execution of Πi, progressively
taking care of the actions which can start at the current state (see Algorithm 3). The algorithm extracts
the plan Πi of lowest cost from set of plans (step 3). If the problem goals are supported in Alloci the
algorithm terminates with success (steps 4–5). If any action in Alloci has unsupported conditions, the
algorithm inserts new actions to support them (steps 6–7), generating new plans. If acts to allocatei is
empty, step 10 selects the action a with the maximal allocation priority, which indicates the action to be al-
located next (see below for an explanation of its calculus). Otherwise, a is extracted from acts to allocatei

(step 12). If a is mutex in Alloci, it is removed or postponed depending on whether a is non-obligatory
or obligatory, respectively (steps 13–17). If a is non-obligatory, it could be a bad choice in the relaxed
plan, but if it is obligatory we know that it must be present in the plan, so it is not removed. Steps 18–23
try to allocate a. If a has unsupported conditions (it is not applicable), step 23 inserts new actions to
support them, generating new plans.

The detection of mutex between actions in step 13 requires a deeper analysis. Although the spike con-
struction has not calculated any mutex, they can still be deduced in the search. Graphplan defines two ways
in which actions can be mutex: i) interference (one action has effects conflicting with conditions/effects
of the other), and ii) competing needs (the conditions of the actions cannot hold simultaneously). On
one hand, interference entails a static condition that depends on the definition of the actions. This in-
formation is static and is provided by TIM [18], which is currently been extended to deal with level 3
durative actions. On the other hand, the algorithm will never allocate actions with competing needs
because their conditions cannot be present simultaneously in the same state. Therefore, the algorithm
uses a lazy schema of mutex, which are only calculated between actions that are about to interact.

2 For simplicity, the algorithms always consider the minimal cost best, assuming a minimisation problem. This
does not reduce the generality of the algorithms, because a maximisation problem can be transformed into a
minimisation one by multiplying all the costs with -1.



1: set of plans ← Π, generated in Algorithm 2
2: while set of plans �= ∅ do
3: extract the lowest cost Πi from set of plans
4: if Alloci supports all the problem goals then
5: exit with success
6: else if ∀aj ∈ Alloci | ∃p ∈ {SCond(aj) ∪ Inv(aj) ∪ ECond(aj)} that is not supported then
7: ∀bk that supports p: insert Πk into set of plans with bk in acts to allocatek

8: else
9: if acts to allocatei = ∅ then

10: a ← arg max(allocation priority)
∀aj∈Relaxi which can start at time of executioni

11: else
12: extract a from acts to allocatei

13: if a is mutex in Alloci then
14: if a is non-obligatory in Πi then
15: remove a from Relaxi

16: else
17: postpone start time of a in Relaxi

18: else if a is applicable then
19: allocate a in Alloci at time of executioni

20: if acts to allocatei = ∅ then
21: regenerate Relaxi from the current state
22: else
23: ∀bk that makes a applicable: insert Πk into set of plans with bk in acts to allocatek

24: update time of executioni

Algorithm 3: Generation of a plan. Planning and allocating actions.

The algorithm has two branching points (steps 7 and 23), where it becomes necessary to insert new
actions in new plans to support unsupported conditions. For each new action aj supporting a condition,
a new plan Πj with action aj marked as obligatory and inserted into acts to allocatej is generated.
Moreover, the algorithm has two points of selection: steps 3 and 10. Step 3 selects the plan Πi with the
lowest cost from set of plans, where the cost has the traditional form f(n) = g(n) + h(n):

cost(Πi) = cost(Alloci ∪ acts to allocatei) + cost(Relax
′
i)

cost(Alloci∪acts to allocatei) is calculated by evaluating the numeric variables (after applying the ac-
tions present both in Alloci and acts to allocatei) in the optimisation function. The calculus of cost(Relax

′
i)

requires two steps: i) the generation of a relaxed plan Relax
′
i from the state achieved by the execution of

Alloci ∪ acts to allocatei, and ii) the evaluation of the cost of the variables (after executing Relax
′
i) in

the optimisation function. The main reason to generate Relax
′
i is that it represents a better estimation

than Relaxi of a plan to achieve the problem goals and, consequently, of the remaining cost. Relaxi was
initially generated from the initial state, and this may be considerably different to the current state. In
particular, the more the algorithm advances in time, the less precise Relaxi becomes. Therefore, whenever
the state changes (after allocating one action) and no actions remain in acts to allocatei, the algorithm
replaces Relaxi with the regenerated plan Relax

′
i (see steps 20–21). This new relaxed plan will better

take advantage of the current state, improving the estimations and helping the plan generation.



Step 10 selects the action from Relaxi with the maximal priority to be allocated at the current
time of executioni. Currently, this value prioritises the action that can be executed in the current state
and minimises the number of mutex with the remaining actions3.

5 Discussion

The approach described in this paper represents our first attempt to extend a temporal planner to deal
with numeric variables in multiobjective planning, while solving some of the initial inefficiencies of TPSYS.
Therefore, there are still some open points which require further investigation:

– Considering the numeric conditions of actions in the estimation calculus as in metric-FF. In the spike
construction during the first stage, the numeric effects are considered without any relaxation, but not
the conditions. This may make the estimations more optimistic than they really are. Additionally,
these conditions could be also taken into account when generating the relaxed plans in the second
stage to make them more precise. Particularly, the relaxation of the numeric conditions may lead to
an empty relaxed plan in some cases. Let us assume one problem in which all the goals are numeric,
i.e. (fuel plane) ≥ 500, (profit) > 100, etc. In this case, the relaxed plan contains no actions
because the propositional goals are supported in an empty plan. Consequently, the generation of a
plan starts from scratch, without an outline that helps build the plan.

– Defining a heuristic function to prune actions when supporting propositions. The algorithm for the
generation of a plan inserts into the plan space as many new plans as actions support the unsatisfied
propositions. This is essential in a complete approach, but the resulting branching factor can be
prohibitive, specially when supporting numeric conditions that require one precise numeric value.
Let us assume a (sub)goal like (profit) = 100. In that case, we might apply many actions with
{+ =,− =, ∗ =, / =} effects on the variable (profit). Although simple heuristics, like selecting + =
or ∗ = effects with maximum right hand side first as Hoffmann proposes in [4], can be used, they are
not always enough. For instance, one alternative is first to apply ∗ = effects because the increment
is bigger, and then tune the value with + = or − = effects. However, a second alternative can apply
first + = effects and then apply ∗ = effects to make the increment still bigger. Further, the order of
application of these effects can vastly modify the length, complexity and cost of the plan.

– Improving the heuristic estimations in the two points of selection of the algorithm to generate a
plan (see Algorithm 3). These two points extract the plan of minimal cost and the action with the
maximal priority to be allocated. On one hand, improving the estimation of the plan cost requires
a more precise analysis of the numeric conditions and effects, as indicated above in the first point.
On the other hand, improving the estimation to select the next action requires to analyse both the
features of the actions (local factors, such as cost, unsupported conditions, etc.) and the structure of
the relaxed plan (global factors, such as causal links or mutex the action imposes in the plan).

– Dealing with continuous effects. Currently, the algorithm only guarantees the numeric conditions in
the extreme points of the execution of the action, i.e. at the start and end points. However, a more
complex model could consider additional constraints on the numeric variables all over the execution
of the action. For instance, a variable (fuel) could be kept within an interval during the execution
of an action for fly. Additionally, these conditions can represent complex functions such as linear,
quadratic, etc.

3 The original TPSYS estimation considers more local factors, such as the cost to make the action applicable, the
number of direct successor actions (causal link dependencies) in Relaxi, the number of direct successors that
meet, etc. We are investigating these and other factors to improve the estimation of this priority.



6 Conclusions and related work

The management of numeric variables and multiobjective optimisation functions is not yet a widely
explored field in AI planning. However, in the last few years some attempts to extend the capabilities
of the planners in that direction have been carried out. One of the first works to include reasoning
under resource constraints in a Graphplan approach was done by Koehler in [19]. In her work, actions
provide, produce or consume resources (expressed as numeric variables), but the assignment operators
in the effects are restricted to {:=, + =,− =}. The domain of the variables is also represented by an
interval through the construction of a classical planning graph. The search is performed in the (iterative
deepening) Graphplan’s way. Consequently, the plan is only optimised in terms of the number of planning
steps, and no other optimisation criterion is considered. More recent works are based on heuristic planning.
GRT-R [11], and its extension to deal with multiobjective planning MO-GRT [5], include information on
resources to construct the heuristic that estimates the distance between each planning state and the
goals. Similarly to our approach, each proposition has associated a cost-vector which is an estimate of the
total cost of achieving that proposition. However, there is an important difference: different values for the
variables are not encoded as an interval and one proposition can have different vectors that correspond to
alternative ways of achieving the proposition, thus increasing the storage requirements. Sapa [12] and TP4
[13] basically use the numeric resource constraints as a measure to adjust the heuristic estimations. On
one hand, the idea in Sapa is to preprocess the problem specification to find out the maximal increment
in the resources levels. Next, this increment is used to readjust the estimations according to the resource
consumptions. On the other hand, TP4 uses the resource constraints as a way to limit the set of actions
that can be executed concurrently and avoid search. metric-FF [4, 14] follows the line of heuristic planning
and applies the idea of relaxing the delete effects to numeric variables. Similarly to [19], the assignment
operators in the effects are restricted to {+ =,− =}. One good property of metric-FF is that it considers
the numeric conditions in the estimation, thus improving the informedness of the estimations. Although
duration could be managed in principle as other numeric variables, the sequential approach of metric-FF
makes this feature useless, which may degrade the quality of the plans.

This paper has presented an attempt to build a planner to deal with numeric variables, extending
the work done in [16]. As a straight consequence of the numeric management, the planner can cope with
problems with multiobjective optimisation criteria, thus giving the user more opportunities to optimise
plans. The basic idea is to associate a vector of numeric variables to each proposition/action that indicate
the estimated value for those variables in the achievement of that proposition/action. It is important to
note that no special distinction is done now for the duration of actions, which is managed exactly as the
rest of numeric variables. Therefore, in this approach the term of temporal planning is subsumed by the
term of planning with numeric variables.

The process consists of dividing the planning algorithm into several stages. First, a stage constructs
two spike vectors which encode the classical information stored in planning graphs, while estimating
the optimistic and pessimistic values for the variables and the cost of the actions w.r.t. the problem
optimisation criterion. Second, a stage performs the search process to generate a plan. This stage uses
an initial relaxed plan, calculated in a backward way, as an outline of the final plan. This outline of the
plan presents two important benefits: i) it prevents the planner from starting search from an empty plan,
and ii) it provides useful information to determine the actions to be allocated next, and to estimate the
distance from a given state to the goals. Unlike other approaches, this estimation does not relax any of the
{:=, + =,− =, ∗ =, / =} effects, though the numeric conditions are not considered in the calculus of the
relaxed plans. We are currently implementing and testing the algorithms, which are part of our ongoing
work. In consequence, there exist some limitations that require additional investigation as discussed in
section 5.



7 Acknowledgments

The work of the first author has been partially supported by the Spanish MCyT under projects DPI2001-
2094-C03-03, TIC2001-4936-E and TIC2002-04146-C05-04, and by the Universidad Politécnica de Valen-
cia under projects 20010017 and 20010980.

References

1. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to problem solving.
Artificial Intelligence 2 (1971) 189–208

2. Pednault, E.: ADL: Exploring the middle ground between strips and the situation calculus. In: Proc. Int.
Conference on Principles of Knowledge Representation and Reasoning (KR-89), San Francisco, CA, Morgan
Kaufmann (1989) 324–332

3. McDermott, D.: PDDL - The Planning Domain Definition Language. AIPS-98 Planning Competition Com-
mittee. (1998)

4. Hoffmann, J.: The Metric-FF planning system: Translating ”ignoring delete lists” to numeric state variables.
to appear in Journal of Artificial Intelligence Research (2003)

5. Refanidis, I., Vlahavas, I.: Multiobjective heuristic state-space planning. to appear in Artificial Intelligence
145(1-2) (2003) 1–32

6. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90 (1997) 281–300
7. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129 (2001) 5–33
8. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of

Artificial Intelligence Research 14 (2001) 253–302
9. Smith, D., Weld, D.: Temporal planning with mutual exclusion reasoning. In: Proc. 16th Int. Joint Conference

on AI (IJCAI-99), Stockholm, Sweden (1999) 326–337
10. Garrido, A., Fox, M., Long, D.: A temporal planning system for durative actions of PDDL2.1. In Harmelen,

F.V., ed.: Proc. European Conference on AI (ECAI-2002), Amsterdam, IOS Press (2002) 586–590
11. Refanidis, I., Vlahavas, I.: Heuristic planning with resources. In Horn, W., ed.: Proc. 14th European Confer-

ence on AI (ECAI-2000), IOS Press (2000) 521–525
12. Do, M., Kambhampati, S.: Sapa: a domain-independent heuristic metric temporal planner. In Cesta, A.,

Borrajo, D., eds.: Proc. European Conference on Planning (ECP-2001). (2001) 109–120
13. Haslum, P., Geffner, H.: Heuristic planning with time and resources. In Cesta, A., Borrajo, D., eds.: Proc.

European Conference on Planning (ECP-2001). (2001) 121–132
14. Hoffmann, J.: Extending FF to numerical state variables. In Harmelen, F.V., ed.: Proc. European Conference

on AI (ECAI-2002), Amsterdam, IOS Press (2002) 571–575
15. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. Technical

report, University of Durham, UK (2001)
16. Garrido, A., Onaind́ıa, E.: On the application of least-commitment and heuristic search in temporal planning.

In: Proc. Int. Joint Conference on AI (IJCAI-2003), San Francisco, CA, Morgan Kaufmann (2003) 942–947
17. Fox, M., Long, D.: Efficient implementation of the plan graph in STAN. Journal of AI Research 10 (1999)

87–115
18. Fox, M., Long, D.: The automatic inference of state invariants in TIM. Journal of AI Research 9 (1998)

367–421
19. Köehler, J.: Planning under resource constraints. In: Proc. European Conference on AI (ECAI-98). (1998)

489–493


