
A Temporal Planning System for Level 3 Durative Actions of PDDL2.1

Antonio Garrido
Dpto. Sistemas Informaticos y Computacion

Universidad Politecnica de Valencia
Camino de Vera s/n, Valencia (Spain)

�agarridot@dsic.upv.es�

Abstract

Many planning domains have temporal features that can be
expressed as durations associated with actions. Unfortu-
nately, the conservative model of actions of most temporal
planners is not appropriate for some domains which require
richer models. Level 3 of PDDL2.1 introduces a model of
durative actions which includes local conditions and effects
to be satisfied at different times during the execution of the
actions, thereby giving the planner freedom to plan concur-
rent actions. This paper presents a temporal planning sys-
tem (TPSYS), which combines the ideas of Graphplan and
TGP, to plan with such durative actions. The approach neces-
sitates the modification of some aspects of the basic planning
algorithm: the mutex reasoning, the generation of the tempo-
ral graph and the search for an optimal plan. Although the
algorithm becomes more complex, the experimental results
demonstrate it remains feasible as a way to deal with durative
actions.

Introduction
Typically, classical planning systems simplify real problems
by imposing unreal constraints on the problems. Particu-
larly, planners rely on a model of actions in which all ac-
tions have the same duration. Although this assumption may
be adequate for some planning problems, it becomes inad-
equate when dealing with temporal planning problems. For
instance, this assumption is not true in real temporal environ-
ments, where different actions take different times of execu-
tion and concurrent actions are required to minimise the du-
ration of the plan. Consequently, in temporal environments
the optimisation criterion must be changed because the inter-
est lies in obtaining a plan of minimal duration rather than a
plan of minimal number of actions.

Most temporal planners appeared in the recent literature,
such as parcPLAN, TGP or TP4 (El-Kholy & Richards
1996; Smith & Weld 1999; Haslum & Geffner 2001) have
yielded some success when dealing with temporality on ac-
tions. Nevertheless, these temporal planners have adopted
the same conservative model of actions of non-temporal
planners. This means that two actions cannot overlap in any
way if an effect or precondition of one is the negation of
an effect or precondition of the other. Although this makes

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

it possible to produce reasonable plans in most benchmark
planning domains, there exist some domains which require
a richer model of actions, and in which better quality plans
can be found if a richer model of actions is used.

PDDL2.1 (Fox & Long 2001) is the new version of the
standard language (PDDL) for the encoding of the planning
domains which has been proposed for the the AIPS-2002
Planning Competition. PDDL2.1 provides five levels to de-
fine planning problems. Concretely, the level 3 introduces a
new model of actions, called durative actions, which makes
it possible to allow actions to overlap even when their pre-
conditions or effects refer to the same propositions. This
is possible because traditional preconditions and effects are
now annotated with time points.

This paper presents a Temporal Planning SYStem (from
now on TPSYS) in order to manage the model of durative
actions proposed in level 3 of PDDL2.1. TPSYS is based on
a three-stage process, which combines the ideas of Graph-
plan (Blum & Furst 1997) and TGP (Smith & Weld 1999).
Hence, the main contributions of this paper are:

� An analysis of how durative actions can be managed in a
Graphplan-based approach.

� An explanation of how a compact temporal graph can be
generated.

� The extension of the mutual exclusion reasoning to man-
age PDDL2.1 durative actions, based on the work of
TGP.

� A description of the plan extraction stage and the way it
obtains the plan of optimal duration (in terms of the dura-
tion of the actions) as an acyclic flow of actions through
the temporal graph.

� Some experimental results showing the importance of the
mutual exclusion reasoning in richer models of actions, as
indicated in (Smith & Weld 1999).

This paper is organized as follows. In the second sec-
tion, we briefly review the motivations for introducing the
model of durative actions of level 3 of PDDL2.1. The third
section introduces the action model, the components of a
durative action and the terminology used through the paper.
The TPSYS algorithm and its three stages are described in
the fourth section. This section provides the modifications

the planning algorithm necessitates to deal with durative ac-
tions. Some experimental results are shown in the fifth sec-
tion, demonstrating the feasibility of the system proposed.
The sixth section discusses two approximations for dealing
with durative actions in traditional planners. Finally, the
conclusions are presented in the seventh section.

Motivation
PDDL does not allow the definition of actions with dura-
tion, which imposes an important limitation in real temporal
problems. In developing PDDL2.1 to allow the modelling of
temporal planning domains it was considered critical to al-
low a fuller exploitation of concurrency than can be captured
using the strong mutex relation of the conservative model of
actions, as the used in TGP (Smith & Weld 1999). This en-
tails a more precise modelling of the state transitions under-
gone by different propositions within the durative interval
of the action. In particular, the preconditions of the starting
point of the action do not necessarily need to be maintained
throughout the interval. There may be preconditions of the
final effect of the action that can be achieved concurrently
rather than maintained throughout the interval. Hence, it be-
comes necessary to distinguish invariant from non-invariant
conditions because there might be invariant conditions that
cannot be affected during the interval of execution. More-
over, there might be initial effects of the starting point that
can be exploited by concurrent actions. All these distinc-
tions give rise to quite sophisticated opportunities for con-
current actions in a PDDL2.1 plan.

We motivate the modelling of the state transitions with
the following example of the classical logistics domain in
the conservative model of actions. Let us consider the ac-
tion fly(plane,origin,destination). This action requires the
proposition at(plane,origin) to be true before executing the
action, and asserts the propositions �at(plane,origin) and
at(plane,destination) at the end of the action. This implies
that the location of the plane is inaccessible until the end of
the action, preventing concurrent actions (for instance, those
that require the plane not to be in the origin) from being ex-
ecuted in parallel with fly(plane,origin,destination). How-
ever, as presented in (Fox & Long 2001), this may exclude
many valid plans. In PDDL2.1 this can be easily avoided by
asserting �at(plane,origin) as an initial effect.

In addition, if we want to know the fact of being flying
during the action fly, it would be enough by asserting the
proposition (flying-plane) as an initial effect of the starting
point and �(flying-plane) as a final effect of the end point.
But, in a conservative model of actions, the equivalent action
for this fly durative action would not represent the fact of be-
ing flying due to the impossibility of including the proposi-
tion (flying-plane) and �(flying-plane) as initial and final ef-
fects, respectively. Therefore, it is impossible to work with
actions which require this proposition, such as the possible
action refuel-during-flight.

Although in real problems instantaneous actions are never
really instantaneous, there are some cases in which these
actions could be useful for modelling purposes. Level 3 of
PDDL2.1 also allows the definition of these actions, i.e. tra-
ditional actions with no duration. Since PDDL2.1 intends to

provide physics instead of advice of the planning problem,
instantaneous actions could be useful in order to obtain a
valid plan for different executive agents when the duration of
the action is very small (or even unknown) to be considered
by the planning agent. More generally, the domain engineer
might choose to model the domain at a level of abstraction
at which it is not interesting to capture the durations of prac-
tically instantaneous actions. That is, the engineer might
choose to emphasise the durations of some actions but not
of others.

These modelling choices do not lead to conflict with the
semantics presented in (Fox & Long 2001) because it is pos-
sible, at level 3 of PDDL2.1, to express an instantaneous ac-
tion as an action with barely measurable duration. This du-
ration is epsilon, an amount so small that it makes no sense
to split it. This means that non-interfering actions that take
epsilon time can happen in parallel but they cannot be in-
terleaved. This epsilon is so small that it never changes the
sequence of actions in the plan. Epsilon has to be chosen ap-
propriately for a given domain and problem, because it rep-
resents a discretization of the time-line into indivisible units,
the end points of which mark the points at which actions can
be initiated or terminated.

Action Model and Terminology
Unlike traditional actions of PDDL, durative actions present
more conditions to be guaranteed for the success of the ac-
tion. Moreover, durative actions do not only have effects that
hold at the end of the actions but also effects to be asserted
immediately after the actions start.

Definition 1 Components of a durative action (see Figure
1). Let � be a durative action which starts at time � and
ends at time �, being executed through the interval ������.
The components of � are the following:

� Conditions. The three types of local conditions of a du-
rative action are: i) ����	�, the set of conditions to be
guaranteed at the start of the action; ii)
���, the set of
invariant conditions to be guaranteed over the execution
of the action; and iii) ����	�, the set of conditions to be
guaranteed at the end of the action.

� Duration. The duration of the action is a positive value
represented by � � �� .

� Effects. The two types of effects of a durative action are: i)
����� � ���		� � �����, with the positive and neg-
ative effects respectively to be asserted at the start of the
action; and ii) ����� � ���		� � �����, with the
positive and negative effects respectively to be asserted at
the end of the action.

Although level 3 allows the modelling of numeric condi-
tions and effects as well as logical transitions, this version
of TPSYS does not manage them yet.

Durative actions entail an important difficulty: there ex-
ist some effects (�����) which can be obtained before the
action ends. Hence, it might be possible that an initiated ac-
tion could not end because its end conditions (����	�) are
not satisfied in the future. In that case, all the start effects

aSCond aInv EConda

SEffa EEffa

aa (duration)

s e

Figure 1: Components of a durative action �.

(and the actions which are dependent on them) should be in-
validated. We call these kind of actions conditional actions
because they are provisional until their end conditions are
guaranteed, and we define them as:

Definition 2 Conditional action. One action � with � �
� is a conditional action if ������ �� �� 	 �����	� �� ��
holds. This way, the set of propositions ����� of a condi-
tional action � only becomes valid when all propositions in
����	� are satisfied.

Conditional actions are motivated by observing that there
are domains in which durative actions are required precisely
for some effect achieved through the duration of execution
of an action (it is bounded by that duration). Such initial ef-
fects cannot be exploited as end effects because they do not
persist beyond the end of the action. For example, in a logis-
tics domain the plane is flying only during the action fly, so
the initial effect (flying-plane) cannot be exploited beyond
the end of the fly action. Further, when plans are validated,
the successful termination of a durative action must be con-
firmed even if a goal is achieved before the end of its durative
interval. This is because durative actions promise to termi-
nate initiated actions in a stable state. If anything in the plan
prevents this stable termination then the plan must be con-
sidered invalid. Richer goal specifications might allow one
to consider goals that must persist only over finitely bounded
intervals (Do & Kambhampati 2001), but PDDL2.1 does not
yet support this.

Definition 3 Conditional proposition. One proposition �
is conditional if all the actions ���� which achieve � are
conditional and they have not ended their execution yet.

Intuitively, if � is only achieved by conditional actions
����, � will be conditional until at least one action �� ends
successfully, which implies both ����	�� and ����	��
are satisfied. Once this happens, � is valid (stopping being
conditional).

As we have seen in the previous section, instantaneous ac-
tions are allowed in level 3 of PDDL2.1. This does not rep-
resent a serious inconvenience because the correspondence
rule below can transform an instantaneous action into a du-
rative action. This way, all the instantaneous actions present
in the planning domain can be managed in the same way as
durative actions.

Definition 4 Correspondence rule
�� ���� . The corre-
spondence rule maps an instantaneous action � �, with
����� , ������ � �		�� ����� into a durative action ��
in the following way:

(:durative-action board
:parameters (?p - person ?a - aircraft

?c - city)
:duration (= ?duration (boarding-time ?c))
:condition (and (at start (at ?p ?c))

(at start (free ?a))
(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))
(at start (not (free ?a)))
(at end (in ?p ?a))))

(:durative-action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (flight-time ?c1 ?c2))
:condition (and (at start (at ?a ?c1)))
:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))))

(:durative-action debark
:parameters (?p - person ?a - aircraft

?c - city)
:duration (= ?duration (debarking-time ?c))
:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))
:effect (and (at start (not (in ?p ?a)))

(at end (free ?a))
(at end (at ?p ?c))))

Figure 2: Definition of a simple domain in level 3 of
PDDL2.1.

����	�� � ����	�� �
���� � �����
��		�� � ��		�� � �		��
����� � ����� � ����

	��������� � �

Figure 2 shows the definition of the simple logistics do-
main zeno-travel for durative actions of level 3 of PDDL2.1.
The three actions are board, fly and debark, which have du-
ration, conditions and effects. According to Definition 1, the
actions have at start and over all conditions with the condi-
tions to be satisfied just at the beginning of the action and
during all its execution, respectively. Analogously, the at
start and at end effects have the effects to be asserted at the
beginning and the end of the execution of the action.

At first blush the extension of a Graphplan-based planner
to deal with durative actions of level 3 would seem quite
easy. However, durative actions imply important changes
in the way the temporal graph is generated and in the way
the search for a plan is performed. These modifications are
presented in the next section.

The Temporal Planning SYStem
In TPSYS, a temporal planning problem is specified as the
4-tuple �������������, where �� and � represent the
initial and final situation, respectively. � represents the set
of durative actions in the planning domain. Time is mod-
elled by �� and their chronological order. ���� stands for
the maximum duration allowed by the user. Although this
bound is not defined in PDDL2.1 and it could be difficult to

First Stage Second Stage

Third Stage

goals satisfied
at t?

plan
found?

t>Dmax

Yes

No

Success

No

Failure

Yes

t<=Dmax

Figure 3: The three stages of TPSYS.

be decided, it allows the user a good way to constrain the
goals deadline and the makespan of the plan as in (Do &
Kambhampati 2001).

TPSYS is executed in three consecutive stages (see Fig-
ure 3). After the first stage, the second and the third stage
are executed in an interleaved way until a plan is found or
the duration exceeds ����.

First stage: Preprocessing and Mutex Reasoning
Graphplan approaches define binary mutual exclusion rela-
tions between actions and between propositions. As TGP,
TPSYS needs to calculate action-action mutex relation-
ships, action-proposition mutex and proposition-proposition
mutex. Since proposition-proposition mutex appears as a
consequence of action-action mutex (Blum & Furst 1997),
this stage only calculates the action-action and action-
proposition static mutex relationships. These mutex rela-
tionships are static because they only depend on the defini-
tion of the actions and they always hold. Therefore, there
is no reason to postpone their calculus to the next stages,
speeding up the second and third stages. The process of
calculating the mutex relationships is complicated by the
semantics of PDDL2.1, which embodies a more permis-
sive mutual exclusion relation than the languages of other
temporal planners. The components of durative actions in
PDDL2.1, presented in Definition 1, have some important
implications for mutex reasoning. In particular, the strong
mutex used by traditional temporal planners, such as TGP,
must be modified to allow durative actions to be applied in
parallel even in cases in which they refer to the same propo-
sitions. In traditional approaches, if two actions have inter-
fering propositions they cannot be executed in parallel, but
when dealing with PDDL2.1 durative actions it may be pos-
sible for such actions to co-occur.

There exist four action-action mutex situations, presented
in Table 1. Case 1 (at start) represents the mutex in which
actions cannot start at the same time because start effects are
contradictory or start effects and start conditions are con-
flicting. Case 2 (at end) represents the mutex in which ac-
tions cannot end at the same time because end effects are

contradictory or end effects and end conditions are conflict-
ing. Case 3 (at end-start) represents the mutex in which two
actions cannot end and start at the same time, i.e. the ac-
tions cannot meet, because the end effects of one action are
conflicting with the start conditions or effects of the other
action. This mutex (which does not appear at Graphplan)
might seem a stronger requirement than is really required,
but it takes account of the fact that simultaneity can never
be relied upon in the real world —it cannot be guaranteed
that the action requiring the at start condition will definitely
happen after the achievement of that condition at execution
time. Furthermore, the computationally efficient testing of
validity of a plan relies on not having to consider all possible
orderings of so-called simultaneous happenings. This issue
is discussed in depth in the PDDL2.1 semantics. Moreover,
Graphplan is tailored to work with simple propositional for-
mulae and it cannot be assumed that the positive assertion
of a proposition will not interact harmfully with more com-
plex precondition formulae. However, TPSYS takes the
correctness-preserving assumption of including an epsilon
(� � �) between the action which ends and the action which
starts to avoid this mutex and to make easier the implemen-
tation of the algorithm. Finally, case 4 (during) represents
the mutex in which one action cannot start or end during the
execution of the other because the start or end effects of the
former are conflicting with the invariant conditions of the
latter.

In addition to the action-action static mutex, the
proposition-action mutex relationships are also calculated in
the first stage. As demonstrated in (Smith & Weld 1999),
when actions have different duration in a Graphplan-based
approach, mutex between propositions and actions help de-
duce more inconsistencies because they better connect mu-
tex between actions to mutex between propositions when ac-
tions are executed in parallel.

Definition 5 Static pa-mutex (proposition/action mutex).
One proposition � is statically mutex with action � iff � �
����� � �����.

Second stage: Extension of the Temporal Graph
The second stage performs the extension of the temporal
graph. The temporal graph consists of a directed, layered
graph which alternates temporal levels of propositions and
temporal levels of actions, represented by � ��� and ���� re-
spectively (Garrido, Onaindı́a, & Barber 2001). The lev-
els are chronologically ordered by their instant of time, by
means of a label � which represents the instant of time in
which propositions are present and actions can start, or end,
their execution. The way of extending the temporal graph
is performed in a similar way to Graphplan. Particularly,
the process consists of generating all the actions �� in ac-
tion level ���� of the graph as soon as their start conditions
are non pairwise mutex in the proposition level � ���, gener-
ating their start and end effects in the proposition levels � ���

and �������
�, respectively. This process finishes once all

the propositions in the final situation are present, non pair-
wise mutex in a proposition level ����, and the actions which
achieved them have already ended.

Case Condition for the mutex Type of mutex Relation

������ � ����� �� �� � ������ � ����� �� ��
1 ������� � ������ � ����	�� �
	��� �� �� �������������

������� � ������ � ����	�� �
	��� �� ��
������ � ����� �� �� � ������ � ����� �� ��

2 ������� ������� � ����	�� �
	��� �� �� ���������

������� � ������ � ����	�� �
	��� �� ��
������� � ������ � ����	�� �
	��� �� ��
������� ������� � ����	�� �
	��� �� ��3

������ � ����� �� �� � ������ � ����� �� ��
�����������

������ � ����� �� �� � ������ � ����� �� ��
�
	�� � ����� �� �� � �
	�� � ����� �� ��4
�
	�� � ����� �� �� � �
	�� � ����� �� ��

���	�
����	�
��

Table 1: Conditions for the static action-action mutex relationships between two durative actions � and �.

Modifications in the Extension of the Temporal Graph
Although the idea of extending the temporal graph is con-
ceptually simple, it contains some subtle details due to the
local conditions and effects of durative actions. In each tem-
poral level it is necessary to study first the effects achieved
by the actions which end (whose at end conditions hold),
and then the effects achieved by the actions which start.
In consequence, each temporal level � is divided into two
parts, end-part and start-part, in which the following action-
action (����� mutex), proposition-action (�� ��� mutex) and
proposition-proposition (�� ���) mutex relationships must be
calculated. We use the notation �����, ����� and ����� to
represent the mutex relationships that hold at time �. These
mutex relationships are temporary and can disappear in time,
in contrast with the notation �� and �� that represent
the static mutex relationships which always hold. The ac-
tions which end at action level ���� are stored in ����	
�,
whereas the actions which start at action level ���� are stored
in ���������. Analogously, the propositions achieved at the
end-part are stored in ����	
�, and the propositions achieved
at the start-part are stored in ���������.

On one hand, the mutex relationships to be calculated
in the end-part are: �����	
��	
� with the actions which
are mutex ending at �; �����	
��	
� with the proposi-
tions which are mutex with the actions which end at �;
and �����	
��	
� with the propositions which are mutex
at � after ending all the actions. On the other hand, the
mutex relationships to be calculated in the start-part are:
���������������� with the actions which are mutex starting
at �; �����	
������� with the mutex between the actions
which end and start at �; ���������������� with the propo-
sitions which are mutex with the actions which start at �;
�����	
������� with the propositions which are mutex at �
and have been achieved by actions which end at � and ac-
tions which start at �, respectively; and ���������������� with
the propositions which are mutex at � after starting all the
actions. The main reason for breaking down these mutex re-
lationships into end-part and start-part lies in making their
calculus simpler, as can be seen in the following definitions:

Definition 6 �����	
��	
�. Two actions �� � are end-end
mutex at time � if one of the following holds: i) �� � are
��	
��	
�, ii) ����	�� ����	� are �����	
��	
�, or iii)

�� � are ��������������������������.

Definition 7 �����	
��	
�. Let � be a proposition and �
be an action. For each action �� which achieves � at �, let
����� be the condition under �� is mutex with the persistence
of � at time �, i.e. ����� � ���� �� are ��� � �������	��
are �����	
��	
���. Proposition � and action � are end-end
mutex at time � if the following condition holds:

�
������� 	

��� �� are �����	
��	
���.

Definition 8 �����	
��	
�. Let �� � be two propositions
and ����� ���� be the sets of actions which achieve � and � at
time �, respectively. Propositions �� � are end-end mutex at
time � if both of the following conditions hold: i) ��� � �� ��
are �����	
��	
�, and ii) ��� � �� �� are �����	
��	
�.

Definition 9 ����������������. Two actions �� � are start-
start mutex at time � if one of the following holds:
i) �� � are �������������, or ii) ����	�� ����	� are
����������������.

Definition 10 �����	
�������. Two actions � (ending at
�) and � (starting at �) are end-start mutex at time � if
one of the following holds: i) �� � are ��	
�������, or ii)
����	�� ����	� are �����	
��	
�.

Definition 11 ����������������. Let � be a proposition and
� be an action. For each action �� which achieves � at �, let
	���� be the condition under �� is mutex with the persistence
of � at time �, i.e. 	���� � ���� �� are ���� ��� ����	�� are
������������������. Proposition � and action � are start-start
mutex at time � if the following condition holds:

�
��	���� 	

��� �� are ������������������.

Definition 12 �����	
�������. Let � be a proposition first
achieved at time � by the set of actions ���� which end at
�. Analogously, let � be another proposition first achieved
at � by the set of actions ���� which start at �. Propositions
�� � are end-start mutex at time � if the following condition
holds: ���� �� � ��� �� are �����	
�������.

Definition 13 ����������������. Let �� � be two propositions
and ����� ���� be the sets of actions which achieve � and � at
time �, respectively. Propositions �� � are start-start mutex at
time � if both of the following conditions hold: i) ��� � �� ��
are ����������������, and ii) ��� � �� �� are ����������������.

Intuitively, ����� mutex relationships represent the im-
possibility of two actions ending, starting or abutting to-
gether at the same time �. ����� mutex represents the im-
possibility of having a proposition and one action starting or
ending at time �. ����� mutex represents the impossibility of
having two propositions together at time �. These calculus of
the mutex relationships obtains the same mutex as Graph-
plan and, thereafter, they provide very useful information to
improve the process of search by avoiding combination of
actions, propositions and propositions/actions which cannot
be satisfied simultaneously, thus reducing the space search
(Blum & Furst 1997).

As can be seen in the previous definitions, the calcu-
lus of the mutex relationships in the end-part and start-part
are nearly identical, with the only difference of recovering
and storing the information in different structures. Thus,
in some cases the structures could be the same improving
the efficiency. Concretely, the implementation of the sec-
ond stage only keeps one structure �� ��� for �����	
��	
�,
�����	
������� and ����������������.

An important point to take into account when dealing with
durative actions in a Graphplan-based approach and which
forced us to modify the algorithm is the condition to fin-
ish the extension of the temporal graph. In Graphplan or
TGP, this condition holds once all the propositions of the fi-
nal situation are non pairwise mutex. However, conditional
actions assert at start effects which might be included in the
final situation before these actions end. This implies that the
temporal graph extension might end in a level in which it is
impossible to find a feasible plan because any of the proposi-
tions in the final situation is still conditional (it has not been
validated yet), losing the benefits of the Graphplan-based
graph extension. Loosely speaking, it means that the action
which achieves that effect has not ended yet and the effects
could be invalid (unavailable) if the at end conditions of the
action fail. In order to tackle this drawback, it becomes nec-
essary to propagate some additional heuristic information
about the validity of the propositions achieved in the tem-
poral graph. In this case, the same disjunctive reasoning on
propositions of Graphplan can be applied on the instants of
time at which the propositions stop being conditional. This
propagation mechanism is quite straightforward, according
to the following definition:

Definition 14 End time of a conditional proposition. Let
� be a conditional proposition and �� �� the set of condi-
tional actions which achieve �. In the proposition level � ���

(at time �), the end time in which � stops being conditional,

��	�� (the maximum end time conditional) is calculated as

�����, where �� is defined as:

�
���
��	�������	������ �
��	�������	�� �� ��, if
� is achieved in an end-part of the graph.

�
���
��	�������	��� � �� � ��, if � is achieved in a
start-part of the graph.

Algorithm for the Extension of the Temporal Graph.
After introducing the modifications which are necessary to
extend the temporal graph, we present the algorithm (see
Figure 4) for extending the temporal graph. Starting at time

Algorithm Temporal Graph Extension
 � �
while � � ����� 	 �
� is not satisfied in �����	

�
� has not conditional propositions do
forall � �
� �
� � which can end at ������� do

������� � ������� � �

������� � ������� � ������
Generate start-part mutex

endforall
forall � �� � � �� � which can start at ��������� do

��������� � ��������� � ��
��������� � ��������� � ������
Generate end-part mutex

endforall
 � next level in the Temporal Graph

endwhile

Figure 4: Algorithm for the temporal graph extension per-
formed in the second stage.

� � � (with all the mutex structures empty), the algorithm
generates new proposition and action levels (end-part and
start-part), calculating all the mutex relationships. First, the
end-part of the temporal graph is generated with the actions
which can end (their end conditions are satisfied). Hence,
the algorithm updates ����	
� with the actions which end at
time �, ����	
� with their end effects, and calculates all the
mutex relationships presented above. Then, the algorithm
generates the start-part of the graph with the actions which
can start (their start conditions are satisfied). The algorithm
updates ��������� and ��������� with the actions which start at
time � and their start effects, respectively, calculating all the
mutex relationships. Here, new temporal levels are gener-
ated according to the duration of the actions generated. This
way, for each �� generated in ���������, the temporal levels
��	� � and ��	� � are created, where obviously �� � � ��� .
��� �� actions and delete-edges (which represent the neg-
ative effects) are not stored in the temporal graph during its
extension. This extension continues until the propositions in
the final situation are achieved and they are not conditional,
i.e. the actions which achieve them have ended and those
propositions are valid. Moreover, the extension also finishes
if the maximum time allowed by the user���� is exhausted,
returning ’Failure’ (see Figure 3).

Lemma 1 The extension of the temporal graph is com-
plete. If the temporal graph extension ends at time �, the
algorithm generates all the necessary temporal levels (at
which actions can end or start) between time � and �.

Proof 1 The proof is direct by definition of the algo-
rithm. The algorithm generates all the actions ���� whose
����	�� hold in each temporal level. Each action level
contains all the actions present in the previous action levels
—analogously for the proposition levels. This way, once one
action �� appears in an action level, this action will appear
in the next levels, and all the temporal levels in which ��
could end and start are calculated and created.

Third stage: Extraction of a Plan
The third stage performs the extraction of an optimal plan,
as an acyclic flow of actions, through the temporal graph
extended in the second stage. In a Graphplan-based ap-
proach the plan is obtained by moving through the graph
in a backward way. The process consists of obtaining the
actions which achieve the propositions to be satisfied. Now,
durative actions allow different ways to achieve these propo-
sitions, not only by their at end effects but also by their at
start effects. Moreover, in order to plan an action all its con-
ditions must be satisfied, which with durative actions entails
to satisfy the start, end and invariant conditions. This breaks
the traditional right to left directionality of Graphplan or
TGP as shown in the following example.

Let us suppose an instant of time � during the extraction
of a plan at which a proposition � must be satisfied. Let us
suppose that action � achieves � at � as a start effect (� �
��		�). If � has end conditions (����	�), they will have
to be satisfied at time �� � � � �, forcing the algorithm
to move again to an already visited instant of time � � � �.
For this reason, the algorithm first selects the set of actions
���� which achieve each proposition as end effects in order
to keep the traditional directionality of the search.

Moreover, before planning an action � it is necessary
to study whether � is compatible with the actions already
planned, i.e. that the new action � does not modify the
invariant conditions of the other actions (������
������
�

mutex relationships of Table 1), discarding � if it is not com-
patible.

The algorithm for the extraction of an optimal plan is
shown in Figure 5. It uses two structures, one queue
������������� formed by pairs ! �� � � with the goal
proposition � to be satisfied at time �, and one list � ���
formed by ! ��� ��� �� � 3-tuples with the planned action ��
starting at �� and ending at ��. ������������� is initial-
ized with the propositions of the final situation to be satisfied
at the instant of time at which the temporal graph extension
has finished. � ��� is initially empty. The algorithm pro-
ceeds in the following way. While there are (sub)goal propo-
sitions in ������������� , the algorithm dequeues a pair
! �� � � to be satisfied. Note that now, � could be already
satisfied at time � because actions are planned in different
points of time and not always in a right to left order. If � is
not already satisfied at time � in � ���, actions that satisfy
� at time � are selected in a backtracking point. Although
all the set of actions ���� which are compatible with actions
in � ��� must be considered for completeness, the actions
which achieve � as end effects are firstly selected to keep
the traditional right to left directionality. If action � � is not
mutex with the actions in � ���, then �� is planned updating
the structures � ��� and ������������� with �� and the
start, invariant and end conditions of � �, respectively.

Since the temporal graph extension finishes as soon as all
the propositions in the final situation are present, non pair-
wise mutex, and the plan extraction is complete, the algo-
rithm obtains the optimal plan in terms of the duration of the
actions (Garrido, Onaindı́a, & Barber 2001).

Lemma 2 The extraction of a plan is a complete process.

Algorithm Plan Extraction
������������� �
� at the end time of second stage
� ��	 � �
while �������������� �� �� do

Dequeue � �� � from �������������
if � �� � is not already satisfied in � ��	

Select � �
� �
� �
 � which satisfies � at and
compatible with � ��	

� ��	 � � ��	 � � �
� �
� �
 �
������������� � ������������� � ���	���

�
	��� ����	���
endif

endwhile

Figure 5: Algorithm for the plan extraction performed in the
third stage.

Proof 2 The proof is trivial due to the fact that the algorithm
considers all the possible actions (backtracking point) which
satisfy each proposition � from ������������� .

Theorem 1 Optimality of the algorithm. The first plan the
algorithm extracts is the plan of optimal duration.

Proof 3 By contradiction, let �� be the first plan (of dura-
tion �) the algorithm extracts. We assume this plan is not
optimal, so we deduce that there exists a plan � �

�� (of dura-
tion �� ! �) which has not been found by the algorithm and is
optimal. This implies one of the following cases: i) the tem-
poral level �� has not been generated during the extension
of the temporal graph, or ii) the temporal level � � has been
generated but the extraction stage has not considered the
plan � ��� from that level ��. The first case is false by Lemma
1 which claims the completeness of the temporal graph ex-
tension, and the second case is also false by Lemma 2 which
claims the completeness of the plan extraction stage. In con-
sequence, this contradicts the initial choice of the existence
of � ��� . Hence, �� is the plan of optimal duration.

Application Example
We present a simple application example, based on the logis-
tics domain zeno-travel presented in Figure 2. This example
allows us to illustrate the extension of the temporal graph. In
order to keep the temporal graph simple enough, the exam-
ple to be solved consists of transporting one person, �����,
from "�� � � to "�� � � by using a ����� which is initially
in "�� � �. The duration of the actions is 5 for ����	 and
	����#, and 10 for �� . Table 2 shows the proposition levels
and the action levels. For each proposition level � ���, only
the ����	
� part of the graph is shown because the actions of
the domain have no positive at start effects —negative ef-
fects are not stored in the temporal graph. For each action
level ����, both the ����	
� and ��������� are shown with the
actions which end, and start, respectively at each instant of
time. In time � � �, actions board(ernie,plane,city-a) and
fly(plane,city-a,city-b) are generated, but because they are
������������� mutex the propositions in(ernie,plane) and
at(plane,city-b) are mutex until time � � ��, in which the
action debark(ernie,plane,city-b) is generated, thus obtain-
ing the goal at(ernie,city-b) in time � � ��. As can be seen,

Level ���� ����

 ������� ������� ���������

0 at(plane,city-a),
at(ernie,city-a)

- board(ernie,plane,city-a),
fly(plane,city-a,city-b)

5
at(plane,city-a),
at(ernie,city-a),
in(ernie,plane)

board(ernie,plane,city-a) board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b)

10

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b),

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

15

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
fly(plane,city-a,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
debark(ernie,plane,city-b),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

20

at(plane,city-a),
at(ernie,city-a),
in(ernie,plane),
at(plane,city-b),
at(ernie,city-b)

board(ernie,plane,city-a),
debark(ernie,plane,city-a),
debark(ernie,plane,city-b),
fly(plane,city-a,city-b),
fly(plane,city-b,city-a)

-

Table 2: Outline of the temporal graph extension for the application example.

although the actions have differing duration, the extension
of the temporal graph is equivalent to Graphplan. The pro-
cess of extraction of a plan selects the instances of actions
which obtain the goals, then the start and end conditions of
these actions, and so on. The plan obtained consists of the
following sequence of actions:

� � � � board(ernie,plane,city-a) ���
� � �� � fly(plane,city-a,city-b) ����
�� � �� � debark(ernie,plane,city-b) ���

The offset � in the instant of time at which the actions are
executed is a necessary feature for a valid plan of PDDL2.1
(Fox & Long 2001). This � is included to avoid the simul-
taneity of the actions when they meet, as presented in the
case 3 of the mutex relationships of Table 1.

Experimental Results
Currently, there does not exist an extensive collection of
benchmarks for durative actions of PDDL2.1. Consequently,
we have adapted some of the traditional domains of PDDL,
such as logistics, travel-bulldozer, ferry, gripper, monkey,
blocksworld and zeno-travel to the model of durative ac-
tions of PDDL2.1. Direct comparison between TPSYS and
recent temporal planner such as Sapa (Do & Kambham-
pati 2001) or TP4 (Haslum & Geffner 2001) is difficult be-
cause they handle resources and even non-admissible heuris-
tics which cannot guarantee the optimal solution. Never-
theless, we want to do direct comparison in the immedi-
ate future. Consequently, we compare TPSYS with TGP
to demonstrate that the algorithm presented here remains
feasible in dealing with traditional temporal planning prob-
lems. We use two versions of TGP: TGP, which consists of
the original version of (Smith & Weld 1999), and TGP-ng,
which extends TGP to keep minimal nogoods, doing back-
jumping during the backward search in the way proposed in

(Kambhampati 2000). The tests were censored after 60 sec-
onds. The results of the tests obtained in a 64 Mb. memory
Celeron 400 MHz. can be seen in Table 3.

The results show that TPSYS behaves well enough in all
the problems. Unlike TGP, TPSYS calculates more mutex
relationships under the model or durative actions, which al-
lows to reduce the search space in the plan extraction. This
allows the complexity of TPSYS to follow the same order of
magnitud of TGP —and even TGP-ng. The most important
differences appear in the problems att-log3 and big-bull2, in
which TGP is clearly better than TPSYS. Although the dif-
ferences between TGP and TGP-ng are not very significant
in these tests, the benefits which can be obtained by exploit-
ing the CSP techniques presented in (Kambhampati 2000)
are very promising to dramatically improve the behaviour of
the plan extraction stage.

Discussion
The temporal planning system described in this paper repre-
sents an approximation for dealing with durative actions of
PDDL2.1 in a Graphplan-based approach. Therefore, most
of the extensions used in Graphplan-based planners could
be used here, such as memoization (Blum & Furst 1997) and
regression (Kambhampati 2000) to improve the third stage,
propositions in the initial (final) situation being placed (re-
quired) at any time during the execution of the plan, and
exogenous events as presented in (Smith & Weld 1999).

Now, we discuss two alternative methods to tackle with
durative actions with at start effects and at end conditions
in a temporal planner with ability to manage instantaneous
actions. Both of them consist of splitting each durative ac-
tion into a collection of simple actions.

The first alternative splits each durative action into two in-
stantaneous actions (which represent the start and end points
of the durative action) and one action with duration (which

Problem TPSYS TGP (TGP-ng)

att-log0 0.42 0.02 (0.01)
att-log1 0.44 0.05 (0.01)
att-log2 0.47 0.06 (0.05)
att-log3 14.10 2.65 (2.50)
bulldozer-prob 0.88 0.55 (0.45)
big-bull1 0.58 0.80 (0.75)
big-bull2 14.31 2.15 (2.10)
ferry1 0.01 0.01 (0.01)
ferry2 0.03 0.02 (0.02)
ferry3 0.30 0.03 (0.02)
gripper2 0.03 0.03 (0.02)
gripper4 0.17 0.13 (0.16)
gripper6 6.88 4.53 (13.50)
monkey1-test 0.20 0.17 (0.15)
monkey2-test 0.63 0.75 (0.70)
tower2 0.02 0.03 (0.02)
tower4 0.28 0.45 (0.50)
tower6 2.52 3.60 (3.25)
zeno-travel1 0.01 0.01 (0.01)
zeno-travel2 0.02 0.01 (0.01)
zeno-travel3 0.02 0.01 (0.01)

Table 3: Comparison of TPSYS and TGP (results are in
seconds).

represents the process of the action). All these three new ac-
tions will have neither at start effects nor at end conditions.
Thus, a durative action � is divided into:

� ��, with no duration. ����	 � �����	� �
���� and
����	 � ������ � ���	�.

� ��, with the duration of � (�). ����
 � �
��� � ���	�
and ����
 � ���
.

� ��, with no duration. ����� � �����	��
�������
�
and ����� � �����.

The inclusion of the artificial effects ���	 and ���
 of
actions �� and �� respectively, allows to generate the ac-
tion �� after ��, and �� after ��, simulating the behaviour
of the original action �. This way, during the plan extrac-
tion, action �� only can be planned if �� has been previously
planned, and analogously, �� only can be planned after plan-
ning ��. The main drawback of this method is the increment
in the number of actions (in a factor of three per each dura-
tive action) and in the number of propositions (in a factor of
two per each durative action) in the domain, which by itself
may be prohibitive. Moreover, if one goal of the problem is
satisfied by ����	, i.e. the original �����, only the action
�� would be planned (without needing to plan �� nor ��),
which would imply an unreal situation in which only a part
of the indivisible action � is executed.

The second alternative is based on the semantic mapping
described in (Fox & Long 2001), and consists of splitting
each durative action into a collection of simple actions. The
collection includes two instantaneous actions (which repre-
sent the start and end points of the durative action) and a
number of identical monitoring actions responsible for con-
firming the maintenance of invariants. The monitoring ac-

tions can be achieved by requiring the ��� ��s correspond-
ing to the invariants of an action to be active in the interval
between the start and end points of that action. Therefore,
they do not need to be built explicitly and only two actions
have to be constructed per durative action. Doubling up the
number of actions need not present a blow-up at instantiation
time, because the durative actions can be instantiated first
and then split, rather than vice versa. During plan extraction
it is necessary to maintain the link between the actions repre-
senting the start and end points of a durative action because
neither one can be exploited without the other. In addition,
it is necessary to manage the temporal constraints implied
by the durations of the actions. A planner based on this ap-
proach has been constructed and appears to perform well in
initial experiments (Long & Fox 2001). The approach still
suffers from the problem caused when the start of a durative
action is added to the plan for its effect (the initial effect of
the durative action) necessitating the addition of the end ac-
tion to the plan if it has not already been chosen. This in
turn can introduce new preconditions, so there is an itera-
tive structure to the plan extraction algorithm. This is highly
reminiscent of the DP-Plan approach (Baioletti, Marcugini,
& Milani 2000) in which the directionality of Graphplan is
exchanged for a Davis-Puttnam search process.

Conclusions through Related Work
Last years have seen many attempts of dealing with temporal
planning. The parcPLAN approach (El-Kholy & Richards
1996) handles a rich set of temporal constraints, instantiat-
ing time points in a similar way to TPSYS. TGP (Smith &
Weld 1999) introduces a complex mutual exclusion reason-
ing which is very valuable in temporal environments. The
critical difference between TGP and TPSYS is based on
several points. First, TPSYS calculates the static mutex re-
lationships in a preprocessing stage which allows to speed
up the rest of stages. Second, TGP uses a more compact
temporal graph in which actions and propositions are only
annotated with the first level at which they appear. This re-
duces vastly the space costs but it increases the complex-
ity of the search process, which may traverse cycles in the
planning graph. In opposition, TPSYS uses a much more
informed temporal graph which reduces the overhead dur-
ing the search. Third, the mutex reasoning is managed in
TGP by means of inequalities and sophisticated formulae,
whereas TPSYS calculates the mutex relationships level by
level in a more similar way to Graphplan. Finally, TPSYS
uses a richer model of actions which implies: i) fewer con-
straints on the execution of the actions, ii) some modifi-
cations in the planning algorithm, and iii) a significantly
larger space of search. More recent temporal planners, such
as Sapa (Do & Kambhampati 2001) or TP4 (Haslum &
Geffner 2001) handle concurrent actions and use heuristic
metrics to deal with resources in planning. Sapa uses a
model of actions similar to PDDL2.1, but it does not per-
form mutex propagation as our system. Sapa scales up
quite well, but it uses non-admissible heuristics which can-
not guarantee the optimal plan. On the other hand, TP4 uses
admissible heuristic search to handle actions with time and
resources, but it assumes a conservative model of actions.

This paper has presented a temporal planning system
which handles durative actions provided by level 3 of
PDDL2.1. Instead of using a conservative model of action,
TPSYS manages actions with local conditions and effects.
Although durative actions make the calculus of the mutex
relationships, the temporal graph extension and the plan ex-
traction stages more complex, they allow modelling of richer
planning domains. Briefly, the main contributions of the pa-
per have been the description of:

� The new components of level 3 durative actions based on
(Fox & Long 2001) and the mutual exclusion relation-
ships they entail.

� The modifications needed during the temporal graph ex-
tension. In the temporal graph extension, each temporal
level has been divided into two parts to make easier the
calculus of the mutex relationships.

� The modifications needed during the plan extraction. We
have presented how the plan is found through the tem-
poral graph without following the traditional right to left
directionality.

The algorithm still has some limitations. According to
our experiments, the performance of the algorithm degrades
when there are many actions and propositions in the plan-
ning domain, due to the calculus of the mutual exclusion re-
lationships. Moreover, the performance of the second stage
degrades when the duration of the actions is wildly differ-
ent. Particularly, the worst performance happens when the
greatest common divisor of the durations of the actions is 1,
which forces the algorithm to consider the maximum num-
ber of temporal levels, thus increasing the complexity of the
third stage. For this reason, the areas of future work are fo-
cused on the inclusion of memoization techniques similar
to the memoization performed in Graphplan and the inclu-
sion of some of the CSP techniques presented in (Kambham-
pati 2000), which have been already tested on TGP. We also
want to extend TPSYS to handle additional features of level
3 of PDDL2.1, such as numeric conditions and effects and
inequality relations on conditions.

Acknowledgements
This work has been partially supported by the Span-
ish MCyT under project DPI2001-2094-C03-03, and by
the Universidad Politecnica de Valencia under projects
20010017 and 20010980.

References
Baioletti, M.; Marcugini, S.; and Milani, A. 2000. DP-
PLAN: An algorithm for fast solutions extraction from a
planning graph. In Proc. of AIPS, 13–21.

Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.

Do, M., and Kambhampati, S. 2001. Sapa: a domain-
independent heuristic metric temporal planner. In Cesta,
A., and Borrajo, D., eds., Proc. European Conf. on Plan-
ning (ECP-01), 109–120.

El-Kholy, A., and Richards, B. 1996. Temporal and re-
source reasoning in planning: the parcPLAN approach. In
Proc. 12th European Conference on Artificial Intelligence
(ECAI-96), 614–618.
Fox, M., and Long, D. 2001. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Techni-
cal report, University of Durham, UK.
Garrido, A.; Onaindı́a, E.; and Barber, F. 2001. Time-
optimal planning in temporal problems. In Cesta, A., and
Borrajo, D., eds., Proc. European Conf. on Planning (ECP-
01), 397–402.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Cesta, A., and Borrajo, D., eds.,
Proc. European Conf. on Planning (ECP-01), 121–132.
Kambhampati, S. 2000. Planning graph as (dynamic) CSP:
Exploiting EBL, DDB and other CSP techniques in graph-
plan. Journal of Artificial Intelligence Research 12:1–34.
Long, D., and Fox, M. 2001. Fast temporal planning in a
graphplan framework. Technical report, Dept. of Computer
Science, University of Durham, UK.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. 16th Int. Joint Conf.
on AI (IJCAI-99), 326–337.

