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Abstract. Nowadays, one of the main techniques used in heuristic plan-
ning is the generation of a relaxed planning graph, based on a Graph-
plan-like expansion. Planners like FF or MIPS use this type of graphs
in order to compute distance-based heuristics during the planning pro-
cess. This paper presents a new approach to extend the functionality
of these graphs in order to manage numeric optimization criteria (prob-
lem metric), instead of only plan length optimization. This extension
leads to more informed relaxed plans, without increasing significantly
the computational cost. Planners that use the relaxed plans for further
refinements can take advantage of this additional information to compute
better quality plans.

1 Introduction

The problem of domain-independent planning is a very complex problem. In fact,
the problem is PSPACE-complete even if some severe restrictions are applied
[2]. Nowadays, one of the best techniques to deal with these complex problems
is heuristic planning. Planners like FF [8], LPG [6], VHPOP [12] or MIPS
[4], use different heuristic functions to guide the search, and all of them have
demonstrated a very competitive performance.

The general principle for deriving heuristics is to formulate a simplified (or
relaxed) version of the problem. Solving the relaxed problem is, in general, easier
than solving the original problem. The solution of the relaxed problem is used
as heuristic to estimate the distance to the goal. One of the most common
relaxations is to ignore the negative effects (or delete list in STRIPS notation)
of the actions. This idea was first proposed by McDermott [9] and, since then,
a big number of planners have adopted this technique (i.e., HSP [1], GRT [10],
Sapa [3], FF, etc.)

Nowadays, the planning community is working on extending the function-
ality of their planners to deal with more expressive problems. Many real-world
problems have several characteristics that can hardly be expressed in pure propo-
sitional STRIPS : complex action conditions, numeric functions, durative actions,



uncertainty, etc. Most of these features can be modeled with the PDDL 2.1 [5]
language, but planners must be adapted to support the new extensions. One
of the main contributions of PDDL 2.1 is the possibility of specifying an opti-
mization criterion for a planning problem. This criterion, called problem metric,
consists of a numeric expression, which has to be maximized or minimized. There-
fore, the user can ask the planner to optimize, for example, the fuel consumption
in a transportation problem, rather than the commonly used criteria as the plan
length or plan duration.

In this paper we propose a new technique to extend the relaxed planning
graphs. This technique allows to deal with numeric optimization criteria. In spite
of there are heuristic planners that can handle problem metrics (like Metric-FF
[7] or MIPS [4]), their heuristic functions are still based on the plan length of the
relaxed problem solution. This paper shows how this technique can be applied
to improve the quality of the heuristic functions and, consequently, the quality
of the final plans.

2 The relaxed planning graph

The relaxed planning graph (RPG) is a graph, based on a Graphplan-like expan-
sion where delete effects are ignored. In this section we describe the traditional
generation of a RPG, although taking into account the numeric part of PDDL
2.1. Firstly, we have to formalize some concepts. A (numeric) planning problem
is defined as a tuple 〈F, P, A, I, G,M〉, where:

– F is a set of numeric variables, called fluents.
– P is a set of logical propositions.
– A is the set of actions.
– I is the initial state.
– G is a set of goals.
– M is the problem metric (numeric optimization criterion).

The numeric extensions of PDDL 2.1 imply that, in addition to the proposi-
tions P , we have a set F of numeric variables (fluents). A state s is thus defined
as a set of propositions p(s) and a set of rational numbers v(s) that represent
the values for each fluent in that state:

s = 〈p(s), v(s)〉/p(s) ⊂ P ∧ v(s) = {v1, . . . , vn} : value(fi, s) = vi, ∀fi ∈ F

An expression is an arithmetic expression over F and the rational numbers,
using the operators +, -, * and /. The value of an expression exp in a state s is
represented as value(exp, s). A numeric constraint is a triple 〈exp, comp, exp′〉
where exp and exp′ are expressions, and comp ∈ {<,≤,=,≥, >} is a com-
parator. A numeric effect is a triple 〈fi, ass, exp〉 where fi ∈ F is a fluent,
ass ∈ {:=, + =,− =, ∗ =, / =} is an assignment operator, and exp is an
expression. The outcome of applying a numeric effect in a state s, written



nresult(〈fi, ass, exp〉, s), is another state in which the value of fluent fi has
been modified with the value of exp, using the assignment operator ass.

Actions in this numeric framework can have numeric preconditions and ef-
fects. Therefore, the preconditions of an action a ∈ A can be propositional,
pprec(a) ⊂ P , or numeric constraints, nprec(a). Likewise, the effects of a can be
propositional, add(a) and del(a) for positive and negative effects respectively, or
numeric effects, neff(a). Regarding the problem goals, we restrict ourselves to
propositional goals (G ⊂ P ) for simplicity. This is the same simplification that
the Sapa planner [3] does. However, the techniques presented in this paper can
be easily translated to other approaches (like Metric-FF [7], which only ignores
decreasing numeric effects). Finally, the problem metric (M) is an expression
which value must be minimized. A maximization problem can be turned into
a minimization problem just multiplying the metric expression by -1. Now, we
can describe a relaxed planning problem, which ignores all delete effects of all
actions.

Definition 1 Assuming a planning problem Pp = 〈F, P,A, I,G, M〉, the relax-
ation a+ of an action a ∈ A, a = 〈pprec(a), nprec(a), add(a), del(a), neff(a)〉,
is defined as:

a+ = 〈pprec(a), ∅, add(a), ∅, ∅〉

The relaxed planning problem is P+
p = 〈F, P, A+, I, G, M〉, where A+ =

{a+/a ∈ A}.

The first step to compute a solution for a relaxed planning problem is to build
the RPG. The traditional RPG building algorithm generates proposition and
action levels alternately. The first level (P0) is a proposition level which contains
all the propositions that are true in the starting state (s0). Action levels contain
all actions that are applicable in the previous level, and the following proposition
levels are extended with the add effects of these actions. The expansion of the
RPG finishes when a proposition level containing all top-level goals is reached,
or when it is not possible to apply any new action. Figure 1 shows this process.

t = 0; P0 = s0 // Initialization

while G * Pt do // New expansion stage

At = {a ∈ A/pprec(a) ⊆ Pt} // Action level

Pt+1 = Pt

⋃
add(a),∀a ∈ A // Proposition level

if Pt+1 = Pt then fail endif

t = t + 1
endwhile

Fig. 1. Traditional RPG expansion.



3 Handling optimization criteria

The basic idea to take into account the optimization criterion in the RPG stage
is to include some information about the actions cost according to the problem
metric. Nevertheless, considering all possible different situations which can arise
due to modifications in the fluent values is unfeasible. Therefore, our proposal
consists in evaluating (an estimate of) the cost of the actions in the current
state (s0). This simplification is completely acceptable in problems where the
costs and the consumption of resources are not very dependent on the state in
which the actions are applied. Most of the planning problems fulfill this require-
ment. For example, the fuel consumption of a plane highly depends on static
information like the flight distance. State-dependent information, like the num-
ber of passengers in a particular flight, only affects slightly.

The main difference with respect to the traditional RPG is that the levels of
the graph do not represent time steps, but costs according to the problem metric
(M). Thus, to compute the levels we have to estimate the cost of applying an
action a:

cost(a) = value(M,nresult(neff(a), s0))− value(M, s0) + ε
if cost(a) < ε then cost(a) = ε endif

(1)

The cost of an action a is computed as the increase in the metric value caused
by the application of a in s0 (we apply the numeric effects of a to s0, regardless
of whether the preconditions of a hold in s0 or not). The small ε included in the
cost represents that every action, even those that do not affect the metric value,
have a cost. This way, if there is no metric defined in the problem, our RPG is
equivalent to the traditional one. Finally, we check the cost to be positive. We
ignore the action effects which decrease the metric value, since it will cause an
out of order expansion of the graph. Then, these actions are considered to have
the minimum cost. The algorithm for the RPG expansion can be formalized as
figure 2 shows.

The algorithm uses the list prog prop (programmed propositions) in order to
store the propositions which will be inserted in the graph. Each programmed
proposition p has an associated cost cost(p). Initially, the prog prop list only
contains the propositions that hold in the current state s0. These propositions
have no cost since they are currently true. The rest of the propositions are not
achieved yet and, therefore, have an infinite cost.

The graph expansion starts with the generation of the first propositional
level. The propositional levels (Pc) are indexed through the cost of their propo-
sitions, so all propositions in a level will have the same cost. The level cost (c)
is computed as the minimum cost of the programmed propositions, in order to
build the graph from lower to higher cost values. The respective action level (Ac)
contains the actions which preconditions have a cost c or lower. The positive ef-
fects of these actions will be added to the prog prop list only if they have not
been achieved before with a lower cost. Let’s suppose that a is the action that
produces a proposition p; the cost of p (cost(p)) is computed as the addition of:



prog prop = s0 // Initialization

cost(p) =

{
0 , if p ∈ s0

∞ , otherwise
, ∀p ∈ P

while ∃g ∈ G/cost(g) = ∞ do // New expansion stage

if prog prop = ∅ then fail endif

c = min(cost(p)), ∀p ∈ prog prop // Level cost

Pc = {p/p ∈ prog prop ∧ cost(p) = c} // Proposition level

prog prop = prog prop− Pc

Ac = {a ∈ A/cost(p) ≤ c, ∀p ∈ pprec(a)} // Action level

for all a ∈ Ac do // Programming action effects

cost reach(a) =
∑

cost(p), ∀p ∈ pprec(a)
for all p ∈ add(a) ∧ (cost reach(a) + cost(a) < cost(p)) do

prog prop = prog prop ∪ {p}
cost(p) = cost reach(a) + cost(a)

endfor

endfor

endwhile

Fig. 2. Proposed RPG for problem metric optimization.

– The cost of achieving a (cost reach(a)): this cost is computed as the sum of
the a preconditions costs.

– The cost of applying a (cost(a)), defined in (1).

The RPG expansion finishes when all top-level goals are achieved, or when
the prog prop list becomes empty. If the prog prop list is empty, then no new
action can be applied and, therefore, the goals cannot be achieved.

This algorithm can be used to improve the heuristic information extracted
from the relaxed plans. Section 3.1 shows an example to compare the traditional
RPG with our proposal. Moreover, the computational complexity of the algo-
rithm is polynomial since the traditional one is proved to be polynomial [8],
and the additional calculations (action and proposition costs) can be done in
polynomial time.

3.1 Example of the RPG expansion

We will illustrate the RPG expansion through a Logistics-like example problem
(see figure 3). In this problem, there are three cities (C1, C2 and C3), one truck
(T ) and one package (P ). The truck and the package are initially located in C1

and C2 respectively. The distance between the cities is shown in figure 3 through
the labels in the roads. The goal is to carry the package to city C3, minimizing the
driven distance (the problem metric is: minimize(driven)). Table 1 summarizes
the domain description.

The RPG for this problem is shown in table 2. This RPG has more levels than
the traditional one, but the number of actions and propositions per level is lower.
The first action level (A0) contains the actions that are directly executable: drive
from C1 to C2 and C3. The cost of having truck T in C3 is 5 (since this is the



Table 1. Domain description of the example problem.

operator param. pprec add del neff

Load ?c at T ?c ∧ at P ?c in P T at P ?c ∅
Unload ?c at T ?c ∧ in P T at P ?c in P T ∅
Drive ?c1 ?c2 at T ?c1 at T ?c2 at T ?c1 driven+=distance ?c1 ?c2

Fig. 3. Initial state in the logistics example problem.

distance between C1 and C3), so the action effects (at T C3) will be programmed
with the cost 5 + ε. Actions which do not affect the metric, like the load and
unload operations, have a cost of ε. The expansion finishes when the goal (at P
C3) is achieved.

Table 2. Relaxed planning graph for the example problem.

P0 A0 P5+ε A5+ε P15+2ε A15+2ε

at T C1 Drive C1 C2 at T C3 Drive C3 C1 at T C2 Drive C2 C1

at P C2 Drive C1 C3 Drive C3 C2 Drive C2 C3

Load C2

P15+3ε A15+3ε P15+4ε A15+4ε P20+5ε

in P T Unload C1 at P C1 Load C1 at P C3

Unload C2

Unload C3

The relaxed plan obtained using our RPG is the following:
P1 = Drive C1 C3 −→ Drive C3 C2 −→ Load C2 −→ Unload C3

The following plan has been computed by means of the FF’s relaxed plan
extraction algorithm [7]:

P2 = {Drive C1 C2, Drive C1 C3} −→ Load C2 −→ Unload C3

The benefits of our proposal can be easily observed just comparing both
relaxed plans. It can be observed that P1 is almost executable (it only needs one



action to go from C2 to C3). Plan P2, however, has hard conflicts since actions
Drive C1 C2 and Drive C1 C3 are mutually exclusive. Moreover, action Drive
C1 C2 should not be included in the plan because of its high cost. Obviously,
if the planner only takes into account the relaxed plan length to compute its
heuristics, this technique does not bring many advantages. On the contrary,
planners that use the information provided by relaxed plan will find a valuable
help building the final plan.

4 Results

The RPG expansion for handling numeric criteria has been implemented in the
SimPlanner v3 planner [11]. SimPlanner v3 is a heuristic planner that can take
advantage of the presented improvements on the relaxed planning graphs. In
other heuristic planners that only use the relaxed plan length, like FF or HSP,
the extra valuable information from the RPG is not fully exploited.

Our proposed expansion and the traditional one are compared in this section.
Both techniques are implemented in the same planner (SimPlanner v3 ). This
way, the results are not influenced by other characteristics of the planner. For
this reason, we have not included comparisons between SimPlanner v3 and other
heuristic planners, since the results would not provide reliable information about
the performance of our proposal.

The domains used in this comparison are numeric domains introduced in
the third international planning competition (IPC’02). The domains used in the
competition are described at

http://planning.cis.strath.ac.uk/competition.

Table 3 shows the results obtained in this comparison for the problems in
DriverLog, ZenoTravel and Depots numeric domains. The DriverLog is a vari-
ation of Logistics where trucks need drivers. Drivers can move along different
road links than trucks. The optimization criterion in DriverLog is to minimize
an instance-specific linear combination of total time, driven distance and walked
distance. ZenoTravel is a transportation domain, where objects must be trans-
ported via aeroplanes. The optimization criterion is to minimize an instance-
specific linear combination of total time and fuel consumption. The Depots do-
main is a combination of Logistics and Blockworld domains, where some blocks
must be transported with trucks between depots and arranged in a certain order.
The optimization criterion is to minimize the overall fuel consumption.

Results on table 3 show the plan quality of the solutions, according to the
problem metric defined, and the running times. These results show that our
proposal improves the plan quality in most of the problems, and solves more
problems than using the traditional approach. On average, the computed plans
are 1.87, 1.25 and 1.23 times better in the DriverLog, ZenoTravel and Depots
domains respectively. However, due to the heuristic nature of SimPlanner v3,
there are a few problems where the traditional approach obtains better plans.

Regarding the running times, table 3 shows that our proposal takes more
time than the traditional one. This is mainly due to three factors:



Table 3. Comparison between the results obtained with the proposed expansion and
with the traditional one (in the form proposed/traditional) for the numeric Driver-
Log, ZenoTravel and Depots domains. Quality depends on the problem metric (greater
numbers stand for more costly plans), and time is measured in seconds.

DriverLog ZenoTravel Depots
Prob. Quality Time Quality Time Quality Time

1 777/777 0.01/0.01 13564/13564 0.01/0.01 32/42 0.01/0.01
2 999/1625 0.08/0.13 6786/6786 0.01/0.01 43/53 0.04/0,03
3 1406/1406 0.03/0.03 6758/6758 0.01/0.01 29/29 0.22/0.15
4 1119/986 0.05/0.05 27000/27000 0.01/0.01 64/50 0.54/0.44
5 1056/1270 0.05/0.05 3978/3978 0.02/0.02 80/259 0.92/2.54
6 2095/2466 0.03/0.02 25097/25097 0.03/0.03 313/313 205.2/195.5
7 1876/1476 0.07/0.04 11198/11198 0.02/0.02 37/57 0.1/0.1
8 3418/3472 0.17/0.09 29677/55480 0.04/0.04 43/43 0.43/0.43
9 4091/9144 1.43/1.53 13275/12644 0.14/0.06 231/409 88.47/79.92
10 241/3211 0.07/0.26 177368/175218 0.36/0.2 27/27 0.27/0.27
11 753/738 0.18/0.07 25505/65093 0.15/0.05 229/196 8.35/13.05
12 6713/5346 5.86/0.7 52206/38547 0.2/0.08 299/389 34.09/27.54
13 2886/3556 0.83/0.76 112468/95657 0.55/0.22 27/27 1.93/2
14 11153/- 2.22/- 430417/183591 3.51/0.27 43/43 2.4/2.42
15 3561/3464 2.79/0.59 59835/205701 1.92/1.65 237/214 28.21/34.35
16 16829/39771 110.6/24 64119/87530 4.14/1.48 31/32 0.29/0.27
17 20655/93031 60/27.7 190845/384645 36.94/12.36 29/31 0.53/0.53
18 70917/82266 283.4/91.3 67610/71944 20.42/7.26 108/127 37.4/36.73
19 -/- -/- 235378/257104 44.46/15.2 48/48 4.65/4.7
20 11555/27884 462/70.7 111671/355711 26.91/20.21 217/- 28.46/-

1.87 better 4.26 slower 1.25 better 2.36 slower 1.23 better 1.03 slower

– The application of formula (1) to estimate the actions costs. How-
ever, in these domains this computation has only a slight effect on the run-
ning time since the costs are static, that is, they do not depend on the state.
And, for the same reason, the estimated costs for these domains are only
computed once in the planning process.

– The number of graph levels. This number is from 10 to 70 times greater
in our proposal, although the number of actions per level is lower.

– The number of actions in the graph. This number is often greater
than in the traditional approach due to the expansion of many unuseful low-
cost actions in first place. In the DriverLog domain, for example, a lot of
unnecessary walk actions are inserted in the graph. This is the main reason
for the greater running times in most of the problems.

These three factors slightly increase the time consumed in the RPG creation.
However, the overall time increment is more significant as SimPlanner v3 has to
build many RPGs when solving a problem. For example, the number of created
RPGs is greater than 105 for some problems.



5 Conclusions and future work

In this paper, we have presented an extension to the traditional relaxed plan-
ning graph generation. A relaxed planning graph is based on a GraphPlan-like
expansion, where delete effects are ignored. The use of these graphs is widely
used in many heuristic planners.

The proposed extension allows to take into account the optimization criterion
(or metric) of the problem. During the graph expansion, an estimate of the cost
of the actions is computed according to the problem metric. This estimate is
used to expand the less costly actions in first place. Practical results show that
our proposal, in general, obtains better solutions than the traditional approach.

The relaxed planning graphs are the starting point for the heuristic estima-
tors of many planners. Therefore, all the improvements on these graphs can help
the planners increase their performance. Metric-FF [7], for example, proposes
an extension to deal with the numeric effects of the actions. The Metric-FF ex-
pansion is completely compatible with our proposed expansion and, therefore,
both techniques could be implemented in the same planner. However, there are
several features that have not been addressed in the relaxed planning graph
framework yet. Handling probabilities and sensing actions, for example, could
allow the planners to face problems with uncertainty more efficiently.
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