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Abstract

TFLAP is a forward-chaining temporal planner that fol-
lows the principles of the classical Partial-Order Causal-Link
(POCL) paradigm. Working with partial-order plans is very
advantageous when doing temporal reasoning as it allows to
manage the parallelism of the plans in a natural way. This
way, TFLAP can deal directly with concurrent tasks, where a
total ordering on the actions of the plans is unfeasible, dura-
tive actions and timed initial literals. The main limitation of
POCL planners is, however, the high computational effort re-
quired to cope with the interactions that arise among actions.
On the other hand, the use of state-based heuristics embedded
in the partial-order framework of TFLAP proves to be a good
guidance, thus partially alleviating the burden of a complex
machinery for handling action interaction.

Introduction
Over the last years, different extensions of classical planning
to solving temporal planning problems have been proposed.
One approach relies on parallelizing the plans obtained by
a classical planner that applies a sequential reasoning on
durative actions. The YAHSP planners family, DAEYAHSP
(Khouadjia et al. 2013), YAHSP2 (Vidal 2011) and the two
versions of YAHSP3 that participated in the IPC-2014 (Vidal
2014), follow this separation of action selection and schedul-
ing, which prevents these planners from handling temporally
expressive features as concurrent temporal domains. This
was evidenced in the IPC-2014 results where these planners
were not able to solve problems of the concurrent domains
TurnAndOPen or TMS. Despite this, YAHSP3-MT was the
winner of the temporal satisficing track of IPC-2014

The approach taken by TFD (Temporal Fast Downward)
(Eyerich, Mattmüller, and Röger 2009) lies in the applica-
tion of a forward search in the space of time-stamped states.
TFD was the runner-up in the temporal satisficing track of
IPC-2014. It ranked second in quality score and third in
number of solved problems. TFD showed an impressive per-
formance in some domains in which it was capable of solv-
ing all of the problems but on the contrary it could not solve
any problem of five domains.

Using satisfiability checking is another important trend of
classical planning research. ITSAT (Rankooh and Ghassem-
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Sani 2015) encodes a given planning problem into a SAT
formula, which is given as the input to an off-the-shelf
SAT solver. ITSAT performed well in quality score at IPC-
2014, obtaining almost the same results of YAHSP3, but per-
formed poorly in the number of solved problems, solving
only 70% of the problems solved by YAHSP3.

Few temporal planners work directly with partial-order
planning (POP). OPTIC (Benton, Coles, and Coles 2012),
the last version of POPF2 (Coles et al. 2010), follows this
approach and it is able to deal with time, numeric fluents,
continuous effects, soft constraints and preferences. OPTIC
obtains high quality plans, although its performance is usu-
ally below the sequential planners.

Our planner TFLAP is based on FLAP2 (Sapena, Torreño,
and Onaindia 2016), a partial-order forward-chaining plan-
ner that follows the principles of POP. TFLAP works simi-
larly to OPTIC, but it introduces two important differences:

• while OPTIC adds temporal constraints between actions
to ensure that preconditions of the new actions are met in
the frontier state, TFLAP does not commit to an action
ordering if this is not required, just like traditional POCL
planners do. This makes TFLAP be more flexible.

• TFLAP is able to incorporate new actions in any point
of the current plan. OPTIC, however, only allows to add
actions that are applicable in the frontier state so that the
newly added actions do not threaten the preconditions of
earlier actions.

These two differences lead to a more flexible temporal
partial-order planner, although this improvement entails a
higher computational effort to deal with the interactions
among actions.

TFLAP’s working scheme
TFLAP is a modular planner implemented in C++. Its main
components can be seen in Figure 1. Initially, the domain
and problem files of the planning task are sent to the parser
module. Then, the information is preprocessed, grounded
and translated to the SAS+ formalism (Bäckström and Nebel
1995). Although these modules can handle all the features of
PDDL3.1, the planning component only supports PDDL2.1
and timed initial literals (TILs) for now.

TFLAP implements an A∗ search guided by an evaluation
function. A search node is a partial-order plan and the start-



Figure 1: Working scheme of TFLAP.

ing node of the search tree is a plan with one fictitious action
that represents the initial state. Additionally, a fictitious ac-
tion is included for each TIL defined in the problem: the
action begins at time 0, its duration is the programmed time,
and the given literal is its only at-end effect. The planner
applies the following six steps at each iteration of the search
process until a solution plan is found:

1. It selects the best node, called base plan, from the set of
open nodes according to the evaluation function.

2. It generates all possible successors of the base plan.
TFLAP considers that a plan is a valid successor of the
base plan if the following conditions are met:
• The successor adds a new action to the base plan.
• The conditions of the new action are supported with

existing actions in the base plan by inserting the corre-
sponding causal links.

• All threats are solved through promotion or demotion
by adding new ordering constraints: the result is a flaw-
free successor plan.

3. TFLAP schedules the actions in each successor node, de-
termining the start time and end time of each action in the
plan. If no valid schedule is found, the successor does not
meet the temporal constraints and it is rejected.

4. The schedule of a node is used to calculate the frontier
state; i.e. the state resulting from executing the plan com-
prised in the node.

5. Successor nodes are evaluated using state-based heuris-
tics, which are computed on their frontier states.

6. Finally, the successor plans are added to the set of open
nodes.

The current version of TFLAP uses two different classical
heuristics to evaluate nodes:

• hFF (Hoffman and Nebel 2001), which builds a relaxed
plan by ignoring the delete effects of the actions and re-
turns its number of actions.

• hLand , a heuristic that computes a landmark graph and
estimates the goal distance through the number of land-
marks that still need to be achieved from the state be-
ing evaluated (Hoffmann, Porteous, and Sebastia 2004;
Sebastia, Onaindia, and Marzal 2006).

The set of open nodes are stored in two different queues,
one per heuristic function. The nodes in the queues are
sorted by f (n) = g(n)+ 2 ∗ h(n), where g(n) is the cost of
node n in number of actions and h(n) is the corresponding
heuristic value of the node. TFLAP applies an alternation of
heuristics: the most promising states are selected according
to the currently used heuristic, completely ignoring the other
heuristic estimate (Röger and Helmert 2010), and changing
the heuristic when no improvement in two consecutive base
plans is obtained.

TFLAP uses a sophisticated machinery to handle least
commitment of durative actions and the scheduling of a
node. This grants TFLAP a great flexibility to be able to
deal with all types of concurrency problems (Cushing et al.
2007). Particularly, the scheduling process of a node is op-
timized by leveraging the topological ordering of the plan
graph contained in the node. This process yields the frontier
state and the makespan of the plan.

TFLAP does not make use of temporal information as
search guidance and only uses classical heuristic functions,
as commented above. This is a major constraint in domains
with dead-ends that provokes TFLAP to encounter plateaus
during search. Nonetheless, we can say that TFLAP is a sim-
ple and versatile temporal planner that exhibits on the whole
a good performance.
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