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Abstract.  In a real planning problem, there exists a set of 
constraints (both temporal constraints and resource usage 
constraints) which must be satisfied in order to obtain a 
feasible plan. This requires a scheduling process (after the 
planning process) which should guarantee the availability 
of resources and the satisfiability of all the problem 
constraints. Several approaches have been proposed to deal 
with planning and scheduling problems. However, these 
approaches have drawbacks which will be presented here. 
This paper deals with the main features of a scheduling 
process in an integrated architecture of planning and 
scheduling, where both processes work in a simultaneous 
way. Thus, the executability of each plan is guaranteed as it 
is being obtained by the planner. The planning process 
searches among alternative partial plans, where each one of 
them has its own ordering relations among actions, resource 
requirements, intermediate states, etc. Since these 
constraints are provided while the plan is being obtained, 
the proposed scheduling process should be able to manage 
them as they are being known. Thus, the scheduler should 
not obtain a solution after each new asserted constraint but 
rather it should only maintain the consistency among all the 
asserted constraints. In addition, the planner keeps track of 
several alternative open plans, which are suitable for being 
expanded in each moment. For this reason, the scheduler 
should maintain the effects of the constraints belonging to 
different plans that are being explored by the planner. 
Hence, both specific planning and scheduling optimisation 
criteria are used in order to improve the behaviour of the 
integrated system, its efficiency and the quality of the 
obtained plan. 

 

1. INTRODUCTION 
In a planning problem, actions usually require use of shared 
resources in order to be executed. Moreover, several 
temporal constraints should be satisfied during the plan 
execution: action durations, effect persistences, temporal 
constraints on problem states, due times, etc. In usual 
planning processes, resource usage and satisfiability of 
problem temporal constraints are not considered. Thus, 
planning systems obtain a plan as a partial or total ordered 
sequence of actions, and a later scheduler process should 
check the feasibility of the plan according to the available 
resources and problem constraints. Therefore, a correct plan 
may not be executable due to violation of some temporal 
constraint or unavailability of shared resources. Thus, a new 
plan should be obtained and there will be a loss of system 
performance. 

 On the other hand, temporal planners can reason about 
metric constraints such as parcPLAN (El-Kholy 1996) and 
IxTeT (Ghallab and Laruelle 1994). These temporal 
planners deal with temporal data by means of an explicit 
representation of time managing qualitative (ordering 
relations commonly used in planning) and quantitative 
constraints (release times and durations used in scheduling). 
In a more integrated way, there are planning systems such as 
Tosca (Beck 1993) and O-Plan (Beck and Tate 1995, Currie 
and Tate 1991) which integrate both planning and 
scheduling processes in a single system. However, a 
drawback appears in these cases: it becomes difficult to 
determine when the system is planning or scheduling: “it is 
easy to see that O-Plan works, but it is difficult to see why” 
(Bäckström 1998). Since a specific process of planning or 
scheduling does not exist, it becomes difficult to determine 
certain optimisation criteria (which, moreover, can be 
integrated in a central module). Consequently, we agree 
planning and scheduling integration is necessary and these 
two processes should be performed simultaneously. 
However, we think these processes are different enough to 
be distinguished during their execution in the integrated 
system. Planning processes deal with what actions are going 
to be executed whereas scheduling processes deal with when 
these actions are going to be executed (Dean, Greenwald 
and Kaelbling 1994). In another way, planning implies 
reasoning about actions and system states, and scheduling 
implies reasoning about actions, resources and time 
(Verfaillie, de Givry and Lesaint 1999). Therefore, it is not 
irrelevant to study both processes in a separate way in order 
to improve finally the performance of the integrated system 
(Bäckström 1998). Thus, an integrated system may obtain 
many benefits from both the planner and the scheduler, such 
as utilisation of shared heuristics, decrease the search space, 
performance improvements, etc. (Laliberty et al. 1996). 
Nevertheless, this integration usually is not quite frequent 
due to the fact that it is neither easy nor intuitive: “these 
systems do not integrate well” (Smith, Lassila and Becker 
1996). 
 This paper deals with the main features of a scheduling 
process in an integrated architecture for planning and 
scheduling (Garrido et al. 1999). In our system, the planner 
and the scheduler work simultaneously in an integrated way. 
Here, the scheduler guarantees the satisfiability of temporal 
constraints and resource availability for each partial plan as 
these plans are obtained by the planner. This way, the 
system recognises the invalid plan and this plan is 
immediately discarded.  Furthermore, even though the plan 



is executable it may not be efficient enough or optimal. For 
this reason an alternative plan may be needed with the 
objective of reducing its cost. 
 One of the main features of our scheduling approach is its 
interactive behaviour and its independence from the 
planning system. This approach is valid for every planning 
system, both forward and backward chaining planners. The 
scheduler allows the integrated system to prune partial 
plans, avoiding the generation of invalid plans. Furthermore, 
the scheduler is able to manage several partial plans, which 
have been generated by the planner. Another important 
feature is the use of heuristics, characteristics of the 
scheduler, which will speed up the integrated process and 
improve its behaviour. 
 In this section we have presented the introduction to this 
paper. We propose the integrated system, its main features 
such as problem specification language (to model the 
problems), and its architecture in section 2. The scheduling 
process, its behaviour through an example and the way we 
manage all the temporal constraints and resource availability 
are described in section 3. Conclusions are discussed in 
section 4. 
 
2. THE INTEGRATED SYSTEM 
In this section we expose a high-level general view of our 
integrated system (Fig. 1). The domain representation is 
obtained from the problem domain by means of the 
specification language. The domain representation consists 
of the problem objects (including the resources), the actions 
and the problem constraints. The integrated system of 
planning and scheduling solves the problem in order to 
achieve the executable plan. Nevertheless, new problem 
constraints or incidences may appear during the execution 
period.  In this case, a reactivity stage is needed to obtain a 
new optimal plan according to the new problem constraints. 
All these elements are detailed below. 
 

 
Fig. 1. General view of the integrated system (from Garrido 
et al. 1999) 
 

2.1. Problem Specification Language 
In order to model and analyse the problem domain, we use a 
specification language, which allows the user to define the 
next elements: 
• Domain object hierarchy. Classic approaches in 

planning use a declarative-language by means of first-
order predicates for domain description (Penberthy and 
Weld 1992). In contrast to these schemes, we always 
maintain the same structure for literals (Garrido et al. 
1999): 

<class-name> <object> <slot-name> <value> 

This frame-based structure allows us to model real 
application environments. The object hierarchy can 
represent problem objects as well as the resource 
hierarchy. There exists a special class for shared 
resources as in (Smith, Lassila and Becker 1996). The 
resources are shared albeit nonsimultaneously by the 
actions. If objects are resources there are several slots 
by default, such as quantity (number of items), resource 
availability (temporal constraints that indicate when the 
resource can be used), service time (how long the 
resource is used by default), etc. Moreover, the user can 
also define the initial situation and goals to achieve by 
using the previous structure. 

• Actions. Actions can be primitive actions, which cannot 
be divided any further or macro-actions, which group 
primitive actions in an established partial or total order. 
We can refine every macro-action in its primitive 
actions carrying out the planning and scheduling 
process through a hierarchy of different levels. Thus, 
we can obtain an initial plan that will be detailed in 
following steps of the process by means of a refinement 
method (Dean, Greenwald and Kaelbling 1994). 

• Problem constraints. These constraints can be applied to 
different elements of the problem: 

• Temporal constraints over the entire plan. They 
indicate the possible execution duration of the 
plan by means of the possible beginning and 
ending of the plan. 

• Constraints over the resource usage. Due to the 
fact that resources cannot be simultaneously used 
by more than one action, constraints must 
guarantee that actions do not use the same 
resource in the same time. 

• Constraints over the ordering of actions because 
there are actions that must be executed in a 
specific order. 

• Constraints over the action durations. These 
durations can be dependent of the order in which 
they are executed. 

• Temporal constraints over the problem objects 
and their states (attributes). For instance, an 
object cannot be held in the same state for 
more/less than a determined interval, an object 
must reach a specific state in a determined 
moment, etc. 

 

2.2. Architecture of the Integrated System 
The planning and scheduling modules in the integrated 
system (Fig. 2) share data structures of the system with the 
common information. This shared common information is 
stored in a special kind of data structure similar to a 
blackboard model (Laliberty et al. 1996). The planner must 
accede to each data related to actions, their ordering, initial 
situation and goals. On the other hand, the scheduler must 
keep all the information related to allocation and 
nonsimultaneous resource usage, temporal constraints and 
ordering among actions. 
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Fig. 2. Integrated architecture of planning and scheduling 
 
 In the integrated system, a strong communication should 
be carried out during the construction process of each partial 
plan. The planning and scheduling processes exchange 
information, by means of the shared data structures, in order 
to obtain a more efficient integration. Communication 
between the planner and the scheduler must occur: 

i) Every time a new planned action (or an existing one) 
solves a precondition. In this case, the scheduler must 
update the ordering among the actions (and the 
ordering of the resources which are used by these 
actions) according to the new causal-link. 

ii) When the planner demands a resource that must be 
used in an action. Here, the scheduler must update the 
sequence of utilisation of the resources in order to 
avoid a simultaneous usage. 

iii) When a new ordering among actions is established 
due to a planning conflict resolution. As in the first 
case, the scheduler must update the ordering among 
the actions. 

  
 In all these cases, the planner must inform the scheduler 
about: 
• The action to be planned.  Since the planner works on 
various excluding alternative plans (Fig. 3), the planner 
must specify in which alternative plan the action is used. 
Each alternative plan represents a plan with different actions 
to achieve the problem objective. Only resources in actions 
of a same partial plan must not be simultaneously used. 
Therefore, the scheduler must be able to manage the 
possible excluding alternative plans at the same time, which 
are shaded in Fig. 3. 
• The resource list to be used in this action. The planner 
may know the resource list to use due to another previously 
planned action in the same partial plan or because the 
planner requires some specific resources.  In this case, the 
scheduler must not allocate new resources, but it will check 
if this allocation is consistent with the known constraints for 
the required resource in its partial plan. If the planner does 
not know the resource to be used, the scheduler should 
assign the necessary resources for the action, in accordance 
with the action specification, by using optimization criteria. 
• The order of the action to be planned.  The planner may 
establish an order, both partial and total, among several 
actions of each partial plan. This order is related to other 
actions involved in its plan. This mechanism permits us to 

establish some ordering criteria by indicating that one action 
precedes another.  If this ordering is the result of solving an 
ordering conflict, the scheduler must reorder the actions and 
determine if the new ordering is consistent according to the 
existing constraints. For instance, if an ordering is not 
feasible because of the violation of any temporal constraint 
or because there is not any available resource, this plan will 
be discarded.  
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Plan 1.1.1
 

Fig. 3. Search among alternative plans (current feasible 
partial plans are shaded) 
 
 When the scheduler detects an inconsistency, it 
communicates to the planner to discard this action. 
Furthermore, the scheduler recommends the planner a list of 
alternative available resources. In addition, the scheduler 
could suggest which partial plan (from the frontier of the 
plan tree (Fig. 3)) should be expanded, taking into account 
which partial plan is less constrained or imposes less 
constraints over resources. This feature can be a valuable 
heuristic for improving the planning process. Hence, a great 
level of integration is required between the planning and 
scheduling processes. For instance, let be P0 the current 
partial plan obtained as a result of a search in the space of 
partial plans (Fig. 4). This plan is expanded by adding new 
actions or steps that will achieve the final objective. Several 
alternative plans Pa, Pb and Pc might be generated, which 
introduce new steps Sa, Sb and Sc, respectively. If the plan Pb 
is selected, the scheduler must check that its temporal 
constraints are satisfied and allocate the resources (only if it 
is necessary). In order to guarantee the constraints of a plan, 
the scheduler may constrain the partial sequence of steps of 
that plan. Therefore, the plan Pb’ is the plan Pb with all its 
constraints satisfied. Next, the plan Pb’ might be expanded, 
the plans Pb1’, Pb2’ and Pb3’ would be generated and the 
process would continue until accomplishing all the problem 
objectives. Finally, the integrated system obtains an 
executable (and eventually optimal) plan according to the 
resource usage and other optimization criteria. 
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Fig. 4. Process of plan expansion and constraint checking by 
the planner and the scheduler, respectively 
 
 During the execution time, some incidences might appear 
(for instance if some resource becomes unavailable). In this 
case, a new reactivity process to repair all the conflicts 
would be necessary to obtain a reassignment of resources, if 
possible. Otherwise, the plan should be modified to 
accomplish the new problem requirements. This gives rise to 
a rescheduling or replanning problem, which is solved by 
means of a repair method (Dean, Greenwald and Kaelbling 
1994).  
 As a result of the integration, we can obtain the following 
advantages: 
• We can detect an inconsistency (due to resource 
unavailability, temporal constraint violation, etc.) in a partial 
plan as soon as this inconsistency appears. Since this 
inconsistency implies a nonfeasible partial plan, this plan is 
quickly discarded. Hence, the efficiency of the global 
process is improved. 
• Since the system uses a specific module of scheduling, 
the system can manage more complex constraints than 
temporal planners. Moreover, we can define optimisation 
criteria (both in the planner and the scheduler) which 
improve both the efficiency of obtaining the plan and the 
quality (optimality) of the obtained plan. 
• According to the way of obtaining the partial plans (Fig. 
4), the final plan is executable. 
 

3. THE SCHEDULING PROCESS 
Once established this general architecture, we will analyse 
the requirements that the scheduling process requires. On 
one hand, one of the main aims of the scheduling process is 
to guarantee the executability of the achieved plan according 
to available resources, context constraints, etc. (Dorn and 
Froeschl 1993). All temporal constraints in the problem 
must be satisfied. Furthermore, the shared resource usage 
must also be consistent; i.e. enough available resources must 
exist to ensure the fulfilment of each planned action when it 
is finally executed. On the other hand, another aim is to 
guarantee the optimality of the obtained plan, according to 
its cost, due times and some optimization criteria. 
 In order to carry out the integration defined in the 
previous section we need a scheduler with a special 

behaviour, which should be more dynamic and interactive 
than traditional scheduling processes. Traditional schedulers 
are based on Constraint Satisfaction Problems or CSPs 
(Kumar 1992, Sadeh and Fox 1996). These schedulers are 
not directly applicable here, because of its lack of flexibility: 
it is very costly to have to obtain a new solution every time a 
new constraint is added or eliminated. For each new set of 
constraints (which are the result of including or excluding 
constraints), a CSP process must resolve the entire problem 
in order to obtain a new solution. However, when the set of 
constraints is modified, the previous solution may become 
invalid. It is clear that incremental CSP methods might be 
used here, but we do not need the solution to the problem in 
each step (Tsang 1993). We only need to assume 
consistency at each new asserted constraint. Furthermore, 
the scheduler must be contextual, i.e., it must be able to 
manage several alternative plans with complex temporal 
constraints simultaneously. 
 Main features of our scheduler, its behaviour through an 
example and the way of managing the temporal constraints 
are detailed in this section. 
 

3.1. General considerations 
Temporal constraints in our problem can be represented by a 
temporal network where nodes represent time points and 
arcs between them represent disjunctive metric-temporal 
constraints (Dechter, Meiri and Pearl 1991). Working with 
disjunctive metric-temporal constraints is a complex task 
because of it implies working with a huge number of 
equivalent networks (one for each disjunction). For instance, 
in a typical problem of scheduling, if the number of tasks on 
a common shared resource is n, the number of equivalent 
different nondisjunctive graphs for each generated graph 
will be 2n (Salido, Garrido and Barber 2000). 
 Our scheduler uses a module for reasoning with temporal 
constraints, the Temporal Constraint Network Manager 
(TCNM). The TCNM guarantees the consistency of the 
temporal network by using a closure process, which 
propagates each new constraint to all nodes of the network 
(Barber 2000). 
 In traditional scheduling systems, the entire set of 
problem constraints is known in advance, so the aim of a 
scheduling process is to obtain a solution which satisfies 
these constraints. Here, CSP techniques are usually used 
(Kumar 1992, Sadeh and Fox 1996). Alternatively, other 
schedulers work on a set of initial solutions which may not 
satisfy the problem constraints, and the schedulers repair 
them over time (Dean, Greenwald and Kaelbling 1994, 
Smith, Lassila and Becker 1996). 
 In opposition to these traditional scheduling processes, 
the problem constraints are incrementally supplied, in our 
case, by the planner while each partial plan is being 
generated. At each new constraint, the scheduler guarantees 
the consistency of all the currently known constraints in 
each partial plan. Our scheduler works in a progressive way. 
As in (Boddy 1993), schedules are constructed by a process 
of iterative refinement. We believe this approach to be more 
flexible because it allows us to add constraints in a dynamic 
way. When a new constraint is added into the system, the 



scheduler will detail the schedule constraining the domain of 
possible values. The scheduler does not obtain the solution 
that satisfies all the current constraints after each constraint 
is asserted, but maintains all the minimal sets of values that 
might be solutions. An inconsistency is produced when the 
domain of possible values becomes empty by the effects of a 
constraint Ci. For instance, we will see an example of two 
actions which use the same nonshared resource in Fig. 5. 
 Let Ax and Ay be two actions that can be executed in any 
order of precedence and that use the same resource. 
Therefore, Ax must be executed before Ay (a) or vice versa 
(b). At this moment, the scheduler only maintains the 
interval of possible solutions in the timeline but without 
allocating any concrete value as in traditional CSPs. Next, if 
a constraint indicates that Ax must be executed before Ay, the 
scheduler will discard the established order “Ay before Ax”. 
With this information, if a new constraint asserts the fact “Ay 
before Ax” this constraint will be treated as an inconsistency 
and it will be discarded. Furthermore, the scheduler may 
impose more restrictive constraints: it may impose 
additional constraints on plans due to temporal or resource 
usage constraints. 
 

a

b Ay BEFORE Ax

Ax BEFORE Ay

Ay Ax

Ax Ay

 
Fig. 5. Example of two actions Ax and Ay which use a 
nonshared resource 
 

3.2. Scheduler behaviour 
The scheduler must represent the necessary information in 
its temporal graph for each new planned action. Every action 
of each plan is translated into one or more temporal 
constraints, which are managed by the TCNM. The 
consistency can be guaranteed thanks to this TCNM which 
checks each new constraint introduced into the scheduling 
system.  
 Following, let us see the three levels of temporal 
constraints that arise in this approach. 
 
Temporal Constraints in the Action Level 
At this level, constraints are based on durations of actions, 
ordering relations and constraints among their time points. 
 For every action (Ai), the scheduler must create two new 
time points, which represent the start time point (Ai.on) and 
the end time point (Ai.off) of the respective action. The 
disjunctive durations are represented by Ai.on {(dmin1 
dmax1), (dmin2 dmax2), ..., (dminn dmaxn)} Ai.off. Each 
interval represents a different disjunction in the duration of 

that action. Furthermore, the scheduler will check the 
ordering constraints with other actions. For instance, if there 
is another action Aj that must be executed before Ai, the 
constraint Aj.off {(0 )} Ai.on will have to be satisfied. On 
the other hand, if an action Aj must be executed before a 
time point TPj, it is represented by Aj.off {(0 )} TPj. 
 
Temporal Constraints in the Resource Level 
Here, constraints are based on durations and nonintersection 
of shared resources due to their nonsimultaneous usage. In 
addition, constraints among actions and time points of 
resource usage are included. 
 For every resource (Rx) used in an action (Ai), the 
scheduler must create two time points. They represent the 
start time point (RxAi.on) when the resource in that action 
may start to be used and the end time point (RxAi.off) when 
the resource in that action may have finished being used. 
The durations (resource usage) are represented by 
disjunctive intervals between the beginning and the ending 
of the resource usage: RxAi.on {(dmin1 dmax1), (dmin2 
dmax2), ..., (dminn dmaxn)} RxAi.off. The beginning and the 
ending of the resource utilisation is related to the start and 
end time points of the action they belong to. Hence, a 
resource may be used during all the action or only during a 
part of it. There may be an offset, either positive or negative, 
between the start point (end point) of the action and the start 
point (end point) of the resource in that action. Besides, it is 
necessary to guarantee that the use of a resource Rx in an 
action Ai (represented by RxAi) is not simultaneous with the 
use of the same resource in another action Aj (represented by 
RxAj). It can be performed simply by indicating the usage of 
the resource Rx in Ai is before or after the usage of that 
resource in Aj. 
 
Temporal Constraints in the Attribute Level 
At this level, the constraints between the object’s states 
(attributes) are represented. Constraints appear due to 
relations between states of one or more dynamic attributes. 
For instance, an attribute cannot change its value during a 
time window. 
 For every pair state-attribute (StkAttx), the scheduler will 
create two new time points, which represent the beginning 
(StkAttx.on) and the ending (StkAttx.off) of an attribute state. 
In a similar way, the duration of these attribute states can be 
represented as StkAttx.on {(dmin1 dmax1), (dmin2 dmax2), ..., 
(dminn dmaxn)} StkAttx.off. If there are some ordering 
relations among states, we use the type of constraints 
StkAttx.off {(0 )} StlAttx.on if the attribute is the same. If 
the attributes are different, we use the constraint StkAttx.off 
{(0 )} StlAtty.on.  
 Since these changes in attribute states are produced by the 
effects of some actions, each pair state-attribute must be 
related to the action that produced its change. As in the 
resource level, there may be a delay, either positive or 
negative, between the beginning or ending of the action, and 
the change of the attribute state. The notion of persistence 
can be represented by a delay (see Fig. 6) in the ending of 
the state change (if the persistence is positive the value 
StkAttx.off will be later than the ending of the action, which 
produces the change in this attribute state). 
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Fig. 6. Representing the persistence in the attribute level 
 
 As we can observe from above, the three levels are quite 
similar. In fact, the steps to carry out these levels are 
practically the same: creating the time points, establishing 
the duration and managing the precedence relations. 
 Moreover, it is important to realise these three levels are 
repeated in each alternative plan managed by both the 
planner and the scheduler. The time points of different plans 
must not be related because they represent distinct 
alternatives to achieve the final plan. If some inconsistency 
is produced in a determined plan, the planner will discard 
that plan and the scheduler will discard the graph with the 
three levels of that plan. 
 

3.3. Illustration through a simple example 
In order to illustrate better the previous levels of temporal 
constraint management, we show a simple example of how 
the actions planned by the planner are managed by the 
scheduler. 
 We will use as example a modified version of the well-
known ferry problem (Barret et al. 1996). The objective is to 
transport some vehicles from the margin of a river to the 
other one. In our case, we also have some lorries to carry out 
this task. Therefore, the resources are the ferries, the lorries 
and a bridge. This bridge must be up in order to the ferries 
can sail under it and it must be down in order to the lorries 
can drive along it. Thus, the bridge is a nonshared resource 
used by both the ferries and the lorries. 
 The user can define the actions, resources and actions of 
this problem by using the specification language defined in 
section 2.1. For instance, in Fig. 7 appears the definition of 
some objects of the problem, such as the generic resource 
‘ferry’, ‘vehicle’ and the actions ‘sail’ and ‘unload.  The 
action ‘sail’ transports a ‘vehicle’ from the margin of the 
river to the other one in a ‘ferry’ and the action ‘unload’ 
disembarks a ‘vehicle’ from the ‘ferry’. In this example, 
there are not any constraints over the attributes. Even though 
the action durations might be disjunctive intervals, we do 
not use them in order to simplify the figures. 
 
 
 

(defclass FERRY (subclass-of RESOURCE)
    (slot location (type PLACE)) ;where is the ferry
    (slot status (type string)) ;is it empty
    (slot load-time  (type disjunctive-interval))
    (slot sailing-time  (type disjunctive-interval))
    (slot unload-time  (type disjunctive-interval)))

(defclass VEHICLE ()
    (slot location (type PLACE)) ;where is the vehicle
    (slot on-ferry (type FERRY)) ;in what ferry
    (slot on-lorry (type LORRY))) ;in what lorry

(defaction sail (?n-ferry ?place1 ?place2)
    (vars (FERRY ?n-ferry sailing-time ?st))
    (preconds (FERRY ?n-ferry location ?place1))
    (test (!= ?place1 ?place2))
    (effects
            (add (FERRY ?n-ferry location ?place2))
            (delete (FERRY ?n-ferry location ?place1)))
    (duration ?st)
    (resources (ferry ?n-ferry ‘during ?st)
                      (bridge B1 ‘during ?st))) ;B1 is the bridge

(defaction unload (?n-ferry ?n-vehicle ?place)
    (vars (FERRY ?n-ferry unload-time ?ut))
    (preconds (VEHICLE ?n-vehicle on-ferry ?n-ferry)

     (FERRY ?n-ferry location ?place))
    (effects
            (add (VEHICLE ?n-vehicle location ?place)

    (FERRY ?n-ferry status ‘empty))
            (delete (VEHICLE ?n-vehicle on-ferry ?n-ferry)))
    (duration ?ut)
    (resources (ferry ?n-ferry ‘during ?ut)))

 
Fig. 7. Fragment of the problem specification: generic 
resource ‘ferry’, ‘vehicle’ and actions ‘sail’ and ‘unload’ 
 
 Let us suppose that the first action the planner plans is 
‘unload’ which uses the ferry F1. Here, the temporal 
network that the scheduler manages is shown in Fig. 8.  
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Fig. 8. Action and resource levels of the action ‘unload’ 
managed by the scheduler  
 
 Next, if the planner plans (in the same alternative plan) 
the action ‘sail’ using the same ferry F1, the new constraints 
asserted in the temporal network are what appear in Fig. 9. 
In this figure, we can see the temporal constraint ((-  -21) 
(16 )) which implies using the ferry F1 in a 
nonsimultaneous way. For this reason, F1 will be used in the 
action ‘unload’ either 16 units of time after its use in ‘sail’ 
or 21 units of time before, but no simultaneously. 
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Fig. 9. Action and resource levels of the action ‘sail’ 
managed by the scheduler 

3.4. Management of temporal constraints 
The temporal constraints over actions, resources and 
attributes are treated as disjunctive metric-temporal 
constraints. Therefore, we have two possible alternatives to 
manage them and to guarantee their consistency and 
correctness. According to the behaviour of these constraint 
management algorithms we can classify them into two 
different kinds: algorithms that maintain the derived 
constraints and algorithms that only maintain the input 
constraints (Salido, Garrido and Barber 2000). 
 
Algorithms that maintain the derived constraints 
These algorithms require large amounts of memory to store 
all the generated constraints in the closure process. The 
reason of maintaining the derived constraints is to allow us 
to know quickly (without any additional process) which is 
the temporal constraint between two time points. When a 
new constraint between two temporal points is asserted into 
the system, these algorithms check its consistency with the 
existing constraint. If the new constraint does not violate the 
existing one, the resulting constraint will be the more 
restrictive combination between them. There are several 
levels of consistency, typically path-consistency (which 
guarantees the consistency of all the paths between two 
temporal points) and global consistency (Dechter, Meiri and 
Pearl 1991) which guarantees the minimality of the network.  
 The propagation (deriving new constraints) is carried out 
by means of the closure process detailed in (Barber 2000) 
and it is graphically represented in Fig. 10. Briefly, each 
time a new constraint is asserted between the time points i 
and j, the following loops are executed: 

i) Loop 1. The derived constraint between node i and 
node kn is calculated:  

)CC(CC
njkijniknik ⊗⊕= , 

where the operation ⊕ is the intersection operation, 
and ⊗ is the combination operation (Dechter, Meiri, 
Pearl 1991). 

ii) Loop 2. The derived constraint between node j and 
node lm is calculated: 

)CC(CC miljimjlmjl ⊗⊕=  

iii) Loop 3. The derived constraint between node lm and 
node kn is calculated: 

)CC(CC
njkjlklkl mnmnm

⊗⊕=  
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Fig. 10. Closure process which propagates the effects of 
asserting a new constraint 
 
 Since guaranteeing the consistency in disjunctive 
networks is a very complex task (NP-complete complexity), 
we can decrease its complexity by using algorithms (of 
polynomial complexity) that relax the consistency. The 
former algorithms perform the propagation process in a 
faster way, but do not guarantee a consistent solution. 
Hence, we cannot assure each new constraint is inconsistent. 
 
Algorithms that only maintain the input constraints 
These algorithms may be used with the aim of reducing the 
complexity of adding new constraints. The main advantage 
of these algorithms is that they do not require large amounts 
of memory because they do not maintain the derived 
constraints. These algorithms do not carry out any 
propagation process among the new constraint and the 
existing ones in the network.  Therefore, they only maintain 
the asserted constraints. This kind of algorithms eases the 
process of retracting some asserted constraints into the 
system. When a new constraint between two temporal points 
is inserted into the system, the algorithm retrieves the 
minimal constraint between these two primitives.  Next, the 
algorithm checks if the new constraint is consistent with the 
retrieved one. If it is consistent, the new constraint is 
accepted, and if not it is rejected. The main problem of this 
approach is to calculate the minimal constraint in a 
nonpropagated network. It is a complex task because there 
exists an exponential number of paths that represent the 
constraints to find. Currently, we are working on new 
algorithms to calculate this minimal constraint in a 
disjunctive network in an efficient way on the basis of 
(Salido, Garrido and Barber 2000). 
 

4. CONCLUSION THROUGH RELATED 
WORK 
The main drawback of temporal planners for performing 
scheduling tasks is that handling difficult temporal 
constraints over plans, actions and nonshared resources 
becomes in a complex task because they do not have 
specific temporal managers. Usually, they use a kind of 
Time Point Network (Beck and Tate 1995) to represent time 
constraints on time points. Although some temporal 



planners can work with metric constraints, such as IxTeT 
(Ghallab and Laruelle 1994), traditionally they do not have 
the enough temporal knowledge or they do not use 
disjunctive constraints. In opposition, if specific processes 
of planning and scheduling are used, we will be able to 
apply characteristic features of each process. For instance, in 
the planner, techniques to diminish the search space and in 
the scheduler, more efficient criteria to carry out a better 
optimisation of the obtained schedule. 
 On the other hand, CSP and incremental CSP techniques 
(Tsang 1993) are not applicable enough due to the fact that 
they obtain a new solution instead of guaranteeing only the 
consistency of the problem constraints. Other authors have 
modelled plans as a set of constraints (future and plan entity 
constraints) which together limit the behaviour of the plan 
during its execution (Tate 1996).  
 As we can see, much effort has been performed in order 
to manage resource scheduling in an efficient way 
(Srivastava and Kambhampati 1999). Moreover, many 
attempts of integrating planning and scheduling have been 
carried out, mainly in the works of Muscettola and Smith 
with HSTS (Muscettola 1994, Smith 1993) and Gervasio 
(Gervasio and DeJong 1992). According to (Dean, 
Greenwald and Kaelbling 1994), we propose an integrated 
refinement system similar to the one proposed for (Ghallab 
and Laruelle 1994). Our system works with different 
alternative plans (contextual scheduling) and with 
disjunctive constraints to schedule resources avoiding their 
simultaneous usage. Hence, in this paper we have detailed 
the behaviour of our scheduler in our planning and 
scheduling integrated environment. The scheduler must have 
a dynamic and interactive behaviour different from 
traditional CSPs. Because the planner in a planning 
environment frequently provides the scheduler new 
constraints, the scheduler must validate them taking into 
account the plan they belong to. We have presented an easy 
way to manage all the constraints of the problem, both 
temporal constraints and resource usage constraints. They 
are managed by three very similar levels: action level, 
resource level and attribute level. In addition, we have 
discussed two ways to manage the temporal constraints: 
maintaining the derived constraints and maintaining only the 
input ones. Currently, we are working on nonpropagation 
techniques which allow us to retract constraints in a very 
efficient way. We are also studying the possibility of adding 
more expressive temporal constraints to the scheduler 
(Jonsson and Bäckström 1998). 
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