
Scheduling in a Planning Environment
A. Garrido, M. A. Salido, F. Barber

Dpto. Sistemas Informáticos y Computación

Universidad Politécnica de Valencia, Camino de Vera s/n 46071
Valencia, Spain

{agarridot, msalido, fbarber}@dsic.upv.es

Abstract. In a real planning problem, there exists a set of
constraints (both temporal constraints and resource usage
constraints) which must be satisfied in order to obtain a
feasible plan. This requires a scheduling process (after the
planning process) which should guarantee the availability
of resources and the satisfiability of all the problem
constraints. Several approaches have been proposed to deal
with planning and scheduling problems. However, these
approaches have drawbacks which will be presented here.
This paper deals with the main features of a scheduling
process in an integrated architecture of planning and
scheduling, where both processes work in a simultaneous
way. Thus, the executability of each plan is guaranteed as it
is being obtained by the planner. The planning process
searches among alternative partial plans, where each one of
them has its own ordering relations among actions, resource
requirements, intermediate states, etc. Since these
constraints are provided while the plan is being obtained,
the proposed scheduling process should be able to manage
them as they are being known. Thus, the scheduler should
not obtain a solution after each new asserted constraint but
rather it should only maintain the consistency among all the
asserted constraints. In addition, the planner keeps track of
several alternative open plans, which are suitable for being
expanded in each moment. For this reason, the scheduler
should maintain the effects of the constraints belonging to
different plans that are being explored by the planner.
Hence, both specific planning and scheduling optimisation
criteria are used in order to improve the behaviour of the
integrated system, its efficiency and the quality of the
obtained plan.

1. INTRODUCTION
In a planning problem, actions usually require use of shared
resources in order to be executed. Moreover, several
temporal constraints should be satisfied during the plan
execution: action durations, effect persistences, temporal
constraints on problem states, due times, etc. In usual
planning processes, resource usage and satisfiability of
problem temporal constraints are not considered. Thus,
planning systems obtain a plan as a partial or total ordered
sequence of actions, and a later scheduler process should
check the feasibility of the plan according to the available
resources and problem constraints. Therefore, a correct plan
may not be executable due to violation of some temporal
constraint or unavailability of shared resources. Thus, a new
plan should be obtained and there will be a loss of system
performance.

 On the other hand, temporal planners can reason about
metric constraints such as parcPLAN (El-Kholy 1996) and
IxTeT (Ghallab and Laruelle 1994). These temporal
planners deal with temporal data by means of an explicit
representation of time managing qualitative (ordering
relations commonly used in planning) and quantitative
constraints (release times and durations used in scheduling).
In a more integrated way, there are planning systems such as
Tosca (Beck 1993) and O-Plan (Beck and Tate 1995, Currie
and Tate 1991) which integrate both planning and
scheduling processes in a single system. However, a
drawback appears in these cases: it becomes difficult to
determine when the system is planning or scheduling: “it is
easy to see that O-Plan works, but it is difficult to see why”
(Bäckström 1998). Since a specific process of planning or
scheduling does not exist, it becomes difficult to determine
certain optimisation criteria (which, moreover, can be
integrated in a central module). Consequently, we agree
planning and scheduling integration is necessary and these
two processes should be performed simultaneously.
However, we think these processes are different enough to
be distinguished during their execution in the integrated
system. Planning processes deal with what actions are going
to be executed whereas scheduling processes deal with when
these actions are going to be executed (Dean, Greenwald
and Kaelbling 1994). In another way, planning implies
reasoning about actions and system states, and scheduling
implies reasoning about actions, resources and time
(Verfaillie, de Givry and Lesaint 1999). Therefore, it is not
irrelevant to study both processes in a separate way in order
to improve finally the performance of the integrated system
(Bäckström 1998). Thus, an integrated system may obtain
many benefits from both the planner and the scheduler, such
as utilisation of shared heuristics, decrease the search space,
performance improvements, etc. (Laliberty et al. 1996).
Nevertheless, this integration usually is not quite frequent
due to the fact that it is neither easy nor intuitive: “these
systems do not integrate well” (Smith, Lassila and Becker
1996).
 This paper deals with the main features of a scheduling
process in an integrated architecture for planning and
scheduling (Garrido et al. 1999). In our system, the planner
and the scheduler work simultaneously in an integrated way.
Here, the scheduler guarantees the satisfiability of temporal
constraints and resource availability for each partial plan as
these plans are obtained by the planner. This way, the
system recognises the invalid plan and this plan is
immediately discarded. Furthermore, even though the plan

is executable it may not be efficient enough or optimal. For
this reason an alternative plan may be needed with the
objective of reducing its cost.
 One of the main features of our scheduling approach is its
interactive behaviour and its independence from the
planning system. This approach is valid for every planning
system, both forward and backward chaining planners. The
scheduler allows the integrated system to prune partial
plans, avoiding the generation of invalid plans. Furthermore,
the scheduler is able to manage several partial plans, which
have been generated by the planner. Another important
feature is the use of heuristics, characteristics of the
scheduler, which will speed up the integrated process and
improve its behaviour.
 In this section we have presented the introduction to this
paper. We propose the integrated system, its main features
such as problem specification language (to model the
problems), and its architecture in section 2. The scheduling
process, its behaviour through an example and the way we
manage all the temporal constraints and resource availability
are described in section 3. Conclusions are discussed in
section 4.

2. THE INTEGRATED SYSTEM
In this section we expose a high-level general view of our
integrated system (Fig. 1). The domain representation is
obtained from the problem domain by means of the
specification language. The domain representation consists
of the problem objects (including the resources), the actions
and the problem constraints. The integrated system of
planning and scheduling solves the problem in order to
achieve the executable plan. Nevertheless, new problem
constraints or incidences may appear during the execution
period. In this case, a reactivity stage is needed to obtain a
new optimal plan according to the new problem constraints.
All these elements are detailed below.

Fig. 1. General view of the integrated system (from Garrido
et al. 1999)

2.1. Problem Specification Language
In order to model and analyse the problem domain, we use a
specification language, which allows the user to define the
next elements:
• Domain object hierarchy. Classic approaches in

planning use a declarative-language by means of first-
order predicates for domain description (Penberthy and
Weld 1992). In contrast to these schemes, we always
maintain the same structure for literals (Garrido et al.
1999):

<class-name> <object> <slot-name> <value>

This frame-based structure allows us to model real
application environments. The object hierarchy can
represent problem objects as well as the resource
hierarchy. There exists a special class for shared
resources as in (Smith, Lassila and Becker 1996). The
resources are shared albeit nonsimultaneously by the
actions. If objects are resources there are several slots
by default, such as quantity (number of items), resource
availability (temporal constraints that indicate when the
resource can be used), service time (how long the
resource is used by default), etc. Moreover, the user can
also define the initial situation and goals to achieve by
using the previous structure.

• Actions. Actions can be primitive actions, which cannot
be divided any further or macro-actions, which group
primitive actions in an established partial or total order.
We can refine every macro-action in its primitive
actions carrying out the planning and scheduling
process through a hierarchy of different levels. Thus,
we can obtain an initial plan that will be detailed in
following steps of the process by means of a refinement
method (Dean, Greenwald and Kaelbling 1994).

• Problem constraints. These constraints can be applied to
different elements of the problem:

• Temporal constraints over the entire plan. They
indicate the possible execution duration of the
plan by means of the possible beginning and
ending of the plan.

• Constraints over the resource usage. Due to the
fact that resources cannot be simultaneously used
by more than one action, constraints must
guarantee that actions do not use the same
resource in the same time.

• Constraints over the ordering of actions because
there are actions that must be executed in a
specific order.

• Constraints over the action durations. These
durations can be dependent of the order in which
they are executed.

• Temporal constraints over the problem objects
and their states (attributes). For instance, an
object cannot be held in the same state for
more/less than a determined interval, an object
must reach a specific state in a determined
moment, etc.

2.2. Architecture of the Integrated System
The planning and scheduling modules in the integrated
system (Fig. 2) share data structures of the system with the
common information. This shared common information is
stored in a special kind of data structure similar to a
blackboard model (Laliberty et al. 1996). The planner must
accede to each data related to actions, their ordering, initial
situation and goals. On the other hand, the scheduler must
keep all the information related to allocation and
nonsimultaneous resource usage, temporal constraints and
ordering among actions.

Problem
Domain

Integrated Process of
Planning & Scheduling Execution

Reactivity

Optimal Plan

Control
Module

Local
Memory

Planner Scheduler

Global
Data

Local
Memory

Fig. 2. Integrated architecture of planning and scheduling

 In the integrated system, a strong communication should
be carried out during the construction process of each partial
plan. The planning and scheduling processes exchange
information, by means of the shared data structures, in order
to obtain a more efficient integration. Communication
between the planner and the scheduler must occur:

i) Every time a new planned action (or an existing one)
solves a precondition. In this case, the scheduler must
update the ordering among the actions (and the
ordering of the resources which are used by these
actions) according to the new causal-link.

ii) When the planner demands a resource that must be
used in an action. Here, the scheduler must update the
sequence of utilisation of the resources in order to
avoid a simultaneous usage.

iii) When a new ordering among actions is established
due to a planning conflict resolution. As in the first
case, the scheduler must update the ordering among
the actions.

 In all these cases, the planner must inform the scheduler
about:
• The action to be planned. Since the planner works on
various excluding alternative plans (Fig. 3), the planner
must specify in which alternative plan the action is used.
Each alternative plan represents a plan with different actions
to achieve the problem objective. Only resources in actions
of a same partial plan must not be simultaneously used.
Therefore, the scheduler must be able to manage the
possible excluding alternative plans at the same time, which
are shaded in Fig. 3.
• The resource list to be used in this action. The planner
may know the resource list to use due to another previously
planned action in the same partial plan or because the
planner requires some specific resources. In this case, the
scheduler must not allocate new resources, but it will check
if this allocation is consistent with the known constraints for
the required resource in its partial plan. If the planner does
not know the resource to be used, the scheduler should
assign the necessary resources for the action, in accordance
with the action specification, by using optimization criteria.
• The order of the action to be planned. The planner may
establish an order, both partial and total, among several
actions of each partial plan. This order is related to other
actions involved in its plan. This mechanism permits us to

establish some ordering criteria by indicating that one action
precedes another. If this ordering is the result of solving an
ordering conflict, the scheduler must reorder the actions and
determine if the new ordering is consistent according to the
existing constraints. For instance, if an ordering is not
feasible because of the violation of any temporal constraint
or because there is not any available resource, this plan will
be discarded.

Plan 0

Plan 1 Plan 2

Plan 1.1 Plan 1.2 Plan 2.1Plan 1.3

Plan 1.1.1

Fig. 3. Search among alternative plans (current feasible
partial plans are shaded)

 When the scheduler detects an inconsistency, it
communicates to the planner to discard this action.
Furthermore, the scheduler recommends the planner a list of
alternative available resources. In addition, the scheduler
could suggest which partial plan (from the frontier of the
plan tree (Fig. 3)) should be expanded, taking into account
which partial plan is less constrained or imposes less
constraints over resources. This feature can be a valuable
heuristic for improving the planning process. Hence, a great
level of integration is required between the planning and
scheduling processes. For instance, let be P0 the current
partial plan obtained as a result of a search in the space of
partial plans (Fig. 4). This plan is expanded by adding new
actions or steps that will achieve the final objective. Several
alternative plans Pa, Pb and Pc might be generated, which
introduce new steps Sa, Sb and Sc, respectively. If the plan Pb
is selected, the scheduler must check that its temporal
constraints are satisfied and allocate the resources (only if it
is necessary). In order to guarantee the constraints of a plan,
the scheduler may constrain the partial sequence of steps of
that plan. Therefore, the plan Pb’ is the plan Pb with all its
constraints satisfied. Next, the plan Pb’ might be expanded,
the plans Pb1’, Pb2’ and Pb3’ would be generated and the
process would continue until accomplishing all the problem
objectives. Finally, the integrated system obtains an
executable (and eventually optimal) plan according to the
resource usage and other optimization criteria.

Plan expansion
(Planner)

Constraint checking
(Scheduler)

S ... S0 k

... S ...a ... S ...b ... S ...c

... S' ...b

... S' ...b2 ... S' ...b3... S' ...b1

Current
partial plan

Plan expansion
(Planner)

P0

Pa

P'b

P'b1 P'b2 P'b3

PcPb

Fig. 4. Process of plan expansion and constraint checking by
the planner and the scheduler, respectively

 During the execution time, some incidences might appear
(for instance if some resource becomes unavailable). In this
case, a new reactivity process to repair all the conflicts
would be necessary to obtain a reassignment of resources, if
possible. Otherwise, the plan should be modified to
accomplish the new problem requirements. This gives rise to
a rescheduling or replanning problem, which is solved by
means of a repair method (Dean, Greenwald and Kaelbling
1994).
 As a result of the integration, we can obtain the following
advantages:
• We can detect an inconsistency (due to resource
unavailability, temporal constraint violation, etc.) in a partial
plan as soon as this inconsistency appears. Since this
inconsistency implies a nonfeasible partial plan, this plan is
quickly discarded. Hence, the efficiency of the global
process is improved.
• Since the system uses a specific module of scheduling,
the system can manage more complex constraints than
temporal planners. Moreover, we can define optimisation
criteria (both in the planner and the scheduler) which
improve both the efficiency of obtaining the plan and the
quality (optimality) of the obtained plan.
• According to the way of obtaining the partial plans (Fig.
4), the final plan is executable.

3. THE SCHEDULING PROCESS
Once established this general architecture, we will analyse
the requirements that the scheduling process requires. On
one hand, one of the main aims of the scheduling process is
to guarantee the executability of the achieved plan according
to available resources, context constraints, etc. (Dorn and
Froeschl 1993). All temporal constraints in the problem
must be satisfied. Furthermore, the shared resource usage
must also be consistent; i.e. enough available resources must
exist to ensure the fulfilment of each planned action when it
is finally executed. On the other hand, another aim is to
guarantee the optimality of the obtained plan, according to
its cost, due times and some optimization criteria.
 In order to carry out the integration defined in the
previous section we need a scheduler with a special

behaviour, which should be more dynamic and interactive
than traditional scheduling processes. Traditional schedulers
are based on Constraint Satisfaction Problems or CSPs
(Kumar 1992, Sadeh and Fox 1996). These schedulers are
not directly applicable here, because of its lack of flexibility:
it is very costly to have to obtain a new solution every time a
new constraint is added or eliminated. For each new set of
constraints (which are the result of including or excluding
constraints), a CSP process must resolve the entire problem
in order to obtain a new solution. However, when the set of
constraints is modified, the previous solution may become
invalid. It is clear that incremental CSP methods might be
used here, but we do not need the solution to the problem in
each step (Tsang 1993). We only need to assume
consistency at each new asserted constraint. Furthermore,
the scheduler must be contextual, i.e., it must be able to
manage several alternative plans with complex temporal
constraints simultaneously.
 Main features of our scheduler, its behaviour through an
example and the way of managing the temporal constraints
are detailed in this section.

3.1. General considerations
Temporal constraints in our problem can be represented by a
temporal network where nodes represent time points and
arcs between them represent disjunctive metric-temporal
constraints (Dechter, Meiri and Pearl 1991). Working with
disjunctive metric-temporal constraints is a complex task
because of it implies working with a huge number of
equivalent networks (one for each disjunction). For instance,
in a typical problem of scheduling, if the number of tasks on
a common shared resource is n, the number of equivalent
different nondisjunctive graphs for each generated graph
will be 2n (Salido, Garrido and Barber 2000).
 Our scheduler uses a module for reasoning with temporal
constraints, the Temporal Constraint Network Manager
(TCNM). The TCNM guarantees the consistency of the
temporal network by using a closure process, which
propagates each new constraint to all nodes of the network
(Barber 2000).
 In traditional scheduling systems, the entire set of
problem constraints is known in advance, so the aim of a
scheduling process is to obtain a solution which satisfies
these constraints. Here, CSP techniques are usually used
(Kumar 1992, Sadeh and Fox 1996). Alternatively, other
schedulers work on a set of initial solutions which may not
satisfy the problem constraints, and the schedulers repair
them over time (Dean, Greenwald and Kaelbling 1994,
Smith, Lassila and Becker 1996).
 In opposition to these traditional scheduling processes,
the problem constraints are incrementally supplied, in our
case, by the planner while each partial plan is being
generated. At each new constraint, the scheduler guarantees
the consistency of all the currently known constraints in
each partial plan. Our scheduler works in a progressive way.
As in (Boddy 1993), schedules are constructed by a process
of iterative refinement. We believe this approach to be more
flexible because it allows us to add constraints in a dynamic
way. When a new constraint is added into the system, the

scheduler will detail the schedule constraining the domain of
possible values. The scheduler does not obtain the solution
that satisfies all the current constraints after each constraint
is asserted, but maintains all the minimal sets of values that
might be solutions. An inconsistency is produced when the
domain of possible values becomes empty by the effects of a
constraint Ci. For instance, we will see an example of two
actions which use the same nonshared resource in Fig. 5.
 Let Ax and Ay be two actions that can be executed in any
order of precedence and that use the same resource.
Therefore, Ax must be executed before Ay (a) or vice versa
(b). At this moment, the scheduler only maintains the
interval of possible solutions in the timeline but without
allocating any concrete value as in traditional CSPs. Next, if
a constraint indicates that Ax must be executed before Ay, the
scheduler will discard the established order “Ay before Ax”.
With this information, if a new constraint asserts the fact “Ay
before Ax” this constraint will be treated as an inconsistency
and it will be discarded. Furthermore, the scheduler may
impose more restrictive constraints: it may impose
additional constraints on plans due to temporal or resource
usage constraints.

a

b Ay BEFORE Ax

Ax BEFORE Ay

Ay Ax

Ax Ay

Fig. 5. Example of two actions Ax and Ay which use a
nonshared resource

3.2. Scheduler behaviour
The scheduler must represent the necessary information in
its temporal graph for each new planned action. Every action
of each plan is translated into one or more temporal
constraints, which are managed by the TCNM. The
consistency can be guaranteed thanks to this TCNM which
checks each new constraint introduced into the scheduling
system.
 Following, let us see the three levels of temporal
constraints that arise in this approach.

Temporal Constraints in the Action Level
At this level, constraints are based on durations of actions,
ordering relations and constraints among their time points.
 For every action (Ai), the scheduler must create two new
time points, which represent the start time point (Ai.on) and
the end time point (Ai.off) of the respective action. The
disjunctive durations are represented by Ai.on {(dmin1
dmax1), (dmin2 dmax2), ..., (dminn dmaxn)} Ai.off. Each
interval represents a different disjunction in the duration of

that action. Furthermore, the scheduler will check the
ordering constraints with other actions. For instance, if there
is another action Aj that must be executed before Ai, the
constraint Aj.off {(0)} Ai.on will have to be satisfied. On
the other hand, if an action Aj must be executed before a
time point TPj, it is represented by Aj.off {(0)} TPj.

Temporal Constraints in the Resource Level
Here, constraints are based on durations and nonintersection
of shared resources due to their nonsimultaneous usage. In
addition, constraints among actions and time points of
resource usage are included.
 For every resource (Rx) used in an action (Ai), the
scheduler must create two time points. They represent the
start time point (RxAi.on) when the resource in that action
may start to be used and the end time point (RxAi.off) when
the resource in that action may have finished being used.
The durations (resource usage) are represented by
disjunctive intervals between the beginning and the ending
of the resource usage: RxAi.on {(dmin1 dmax1), (dmin2
dmax2), ..., (dminn dmaxn)} RxAi.off. The beginning and the
ending of the resource utilisation is related to the start and
end time points of the action they belong to. Hence, a
resource may be used during all the action or only during a
part of it. There may be an offset, either positive or negative,
between the start point (end point) of the action and the start
point (end point) of the resource in that action. Besides, it is
necessary to guarantee that the use of a resource Rx in an
action Ai (represented by RxAi) is not simultaneous with the
use of the same resource in another action Aj (represented by
RxAj). It can be performed simply by indicating the usage of
the resource Rx in Ai is before or after the usage of that
resource in Aj.

Temporal Constraints in the Attribute Level
At this level, the constraints between the object’s states
(attributes) are represented. Constraints appear due to
relations between states of one or more dynamic attributes.
For instance, an attribute cannot change its value during a
time window.
 For every pair state-attribute (StkAttx), the scheduler will
create two new time points, which represent the beginning
(StkAttx.on) and the ending (StkAttx.off) of an attribute state.
In a similar way, the duration of these attribute states can be
represented as StkAttx.on {(dmin1 dmax1), (dmin2 dmax2), ...,
(dminn dmaxn)} StkAttx.off. If there are some ordering
relations among states, we use the type of constraints
StkAttx.off {(0)} StlAttx.on if the attribute is the same. If
the attributes are different, we use the constraint StkAttx.off
{(0)} StlAtty.on.
 Since these changes in attribute states are produced by the
effects of some actions, each pair state-attribute must be
related to the action that produced its change. As in the
resource level, there may be a delay, either positive or
negative, between the beginning or ending of the action, and
the change of the attribute state. The notion of persistence
can be represented by a delay (see Fig. 6) in the ending of
the state change (if the persistence is positive the value
StkAttx.off will be later than the ending of the action, which
produces the change in this attribute state).

Attribute Level

A .offi
((30 30))

St Att .offk x
Duration

DelayDelay

Action Level

A .oni

St Att .onk x

Fig. 6. Representing the persistence in the attribute level

 As we can observe from above, the three levels are quite
similar. In fact, the steps to carry out these levels are
practically the same: creating the time points, establishing
the duration and managing the precedence relations.
 Moreover, it is important to realise these three levels are
repeated in each alternative plan managed by both the
planner and the scheduler. The time points of different plans
must not be related because they represent distinct
alternatives to achieve the final plan. If some inconsistency
is produced in a determined plan, the planner will discard
that plan and the scheduler will discard the graph with the
three levels of that plan.

3.3. Illustration through a simple example
In order to illustrate better the previous levels of temporal
constraint management, we show a simple example of how
the actions planned by the planner are managed by the
scheduler.
 We will use as example a modified version of the well-
known ferry problem (Barret et al. 1996). The objective is to
transport some vehicles from the margin of a river to the
other one. In our case, we also have some lorries to carry out
this task. Therefore, the resources are the ferries, the lorries
and a bridge. This bridge must be up in order to the ferries
can sail under it and it must be down in order to the lorries
can drive along it. Thus, the bridge is a nonshared resource
used by both the ferries and the lorries.
 The user can define the actions, resources and actions of
this problem by using the specification language defined in
section 2.1. For instance, in Fig. 7 appears the definition of
some objects of the problem, such as the generic resource
‘ferry’, ‘vehicle’ and the actions ‘sail’ and ‘unload. The
action ‘sail’ transports a ‘vehicle’ from the margin of the
river to the other one in a ‘ferry’ and the action ‘unload’
disembarks a ‘vehicle’ from the ‘ferry’. In this example,
there are not any constraints over the attributes. Even though
the action durations might be disjunctive intervals, we do
not use them in order to simplify the figures.

(defclass FERRY (subclass-of RESOURCE)
 (slot location (type PLACE)) ;where is the ferry
 (slot status (type string)) ;is it empty
 (slot load-time (type disjunctive-interval))
 (slot sailing-time (type disjunctive-interval))
 (slot unload-time (type disjunctive-interval)))

(defclass VEHICLE ()
 (slot location (type PLACE)) ;where is the vehicle
 (slot on-ferry (type FERRY)) ;in what ferry
 (slot on-lorry (type LORRY))) ;in what lorry

(defaction sail (?n-ferry ?place1 ?place2)
 (vars (FERRY ?n-ferry sailing-time ?st))
 (preconds (FERRY ?n-ferry location ?place1))
 (test (!= ?place1 ?place2))
 (effects
 (add (FERRY ?n-ferry location ?place2))
 (delete (FERRY ?n-ferry location ?place1)))
 (duration ?st)
 (resources (ferry ?n-ferry ‘during ?st)
 (bridge B1 ‘during ?st))) ;B1 is the bridge

(defaction unload (?n-ferry ?n-vehicle ?place)
 (vars (FERRY ?n-ferry unload-time ?ut))
 (preconds (VEHICLE ?n-vehicle on-ferry ?n-ferry)

 (FERRY ?n-ferry location ?place))
 (effects
 (add (VEHICLE ?n-vehicle location ?place)

 (FERRY ?n-ferry status ‘empty))
 (delete (VEHICLE ?n-vehicle on-ferry ?n-ferry)))
 (duration ?ut)
 (resources (ferry ?n-ferry ‘during ?ut)))

Fig. 7. Fragment of the problem specification: generic
resource ‘ferry’, ‘vehicle’ and actions ‘sail’ and ‘unload’

 Let us suppose that the first action the planner plans is
‘unload’ which uses the ferry F1. Here, the temporal
network that the scheduler manages is shown in Fig. 8.

Resource Level

unload.on unload.off Final
Situation

((0 ∞))Initial
Situation

((20 20)) ((0 ∞))

F1.on
in unload

F1.off
in unload

((20 20))

((0 0))((0 0))

Action Level

Fig. 8. Action and resource levels of the action ‘unload’
managed by the scheduler

 Next, if the planner plans (in the same alternative plan)
the action ‘sail’ using the same ferry F1, the new constraints
asserted in the temporal network are what appear in Fig. 9.
In this figure, we can see the temporal constraint ((- -21)
(16)) which implies using the ferry F1 in a
nonsimultaneous way. For this reason, F1 will be used in the
action ‘unload’ either 16 units of time after its use in ‘sail’
or 21 units of time before, but no simultaneously.

Resource Level

sail.on sail.off Final
Situation

((0 ∞))Initial
Situation

((15 15)) ((0 ∞))

F1.on
in sail

F1.off
in sail

((15 15))

((0 0))((0 0))

Action Level

B1.on
in sail

B1.off
in sail

((15 15))

((0 0))((0 0))

F1.on
in unload

F1.off
in unload

((20 20))

((−∞ −21)
 (16))∞

Fig. 9. Action and resource levels of the action ‘sail’
managed by the scheduler

3.4. Management of temporal constraints
The temporal constraints over actions, resources and
attributes are treated as disjunctive metric-temporal
constraints. Therefore, we have two possible alternatives to
manage them and to guarantee their consistency and
correctness. According to the behaviour of these constraint
management algorithms we can classify them into two
different kinds: algorithms that maintain the derived
constraints and algorithms that only maintain the input
constraints (Salido, Garrido and Barber 2000).

Algorithms that maintain the derived constraints
These algorithms require large amounts of memory to store
all the generated constraints in the closure process. The
reason of maintaining the derived constraints is to allow us
to know quickly (without any additional process) which is
the temporal constraint between two time points. When a
new constraint between two temporal points is asserted into
the system, these algorithms check its consistency with the
existing constraint. If the new constraint does not violate the
existing one, the resulting constraint will be the more
restrictive combination between them. There are several
levels of consistency, typically path-consistency (which
guarantees the consistency of all the paths between two
temporal points) and global consistency (Dechter, Meiri and
Pearl 1991) which guarantees the minimality of the network.
 The propagation (deriving new constraints) is carried out
by means of the closure process detailed in (Barber 2000)
and it is graphically represented in Fig. 10. Briefly, each
time a new constraint is asserted between the time points i
and j, the following loops are executed:

i) Loop 1. The derived constraint between node i and
node kn is calculated:

)CC(CC
njkijniknik ⊗⊕= ,

where the operation ⊕ is the intersection operation,
and ⊗ is the combination operation (Dechter, Meiri,
Pearl 1991).

ii) Loop 2. The derived constraint between node j and
node lm is calculated:

)CC(CC miljimjlmjl ⊗⊕=

iii) Loop 3. The derived constraint between node lm and
node kn is calculated:

)CC(CC
njkjlklkl mnmnm

⊗⊕=

l1

l2

l3

...

ln

i j

k1

k2

k3

...

kn

Loop 1

Loop 3

Loop 2

New
constraint

Fig. 10. Closure process which propagates the effects of
asserting a new constraint

 Since guaranteeing the consistency in disjunctive
networks is a very complex task (NP-complete complexity),
we can decrease its complexity by using algorithms (of
polynomial complexity) that relax the consistency. The
former algorithms perform the propagation process in a
faster way, but do not guarantee a consistent solution.
Hence, we cannot assure each new constraint is inconsistent.

Algorithms that only maintain the input constraints
These algorithms may be used with the aim of reducing the
complexity of adding new constraints. The main advantage
of these algorithms is that they do not require large amounts
of memory because they do not maintain the derived
constraints. These algorithms do not carry out any
propagation process among the new constraint and the
existing ones in the network. Therefore, they only maintain
the asserted constraints. This kind of algorithms eases the
process of retracting some asserted constraints into the
system. When a new constraint between two temporal points
is inserted into the system, the algorithm retrieves the
minimal constraint between these two primitives. Next, the
algorithm checks if the new constraint is consistent with the
retrieved one. If it is consistent, the new constraint is
accepted, and if not it is rejected. The main problem of this
approach is to calculate the minimal constraint in a
nonpropagated network. It is a complex task because there
exists an exponential number of paths that represent the
constraints to find. Currently, we are working on new
algorithms to calculate this minimal constraint in a
disjunctive network in an efficient way on the basis of
(Salido, Garrido and Barber 2000).

4. CONCLUSION THROUGH RELATED
WORK
The main drawback of temporal planners for performing
scheduling tasks is that handling difficult temporal
constraints over plans, actions and nonshared resources
becomes in a complex task because they do not have
specific temporal managers. Usually, they use a kind of
Time Point Network (Beck and Tate 1995) to represent time
constraints on time points. Although some temporal

planners can work with metric constraints, such as IxTeT
(Ghallab and Laruelle 1994), traditionally they do not have
the enough temporal knowledge or they do not use
disjunctive constraints. In opposition, if specific processes
of planning and scheduling are used, we will be able to
apply characteristic features of each process. For instance, in
the planner, techniques to diminish the search space and in
the scheduler, more efficient criteria to carry out a better
optimisation of the obtained schedule.
 On the other hand, CSP and incremental CSP techniques
(Tsang 1993) are not applicable enough due to the fact that
they obtain a new solution instead of guaranteeing only the
consistency of the problem constraints. Other authors have
modelled plans as a set of constraints (future and plan entity
constraints) which together limit the behaviour of the plan
during its execution (Tate 1996).
 As we can see, much effort has been performed in order
to manage resource scheduling in an efficient way
(Srivastava and Kambhampati 1999). Moreover, many
attempts of integrating planning and scheduling have been
carried out, mainly in the works of Muscettola and Smith
with HSTS (Muscettola 1994, Smith 1993) and Gervasio
(Gervasio and DeJong 1992). According to (Dean,
Greenwald and Kaelbling 1994), we propose an integrated
refinement system similar to the one proposed for (Ghallab
and Laruelle 1994). Our system works with different
alternative plans (contextual scheduling) and with
disjunctive constraints to schedule resources avoiding their
simultaneous usage. Hence, in this paper we have detailed
the behaviour of our scheduler in our planning and
scheduling integrated environment. The scheduler must have
a dynamic and interactive behaviour different from
traditional CSPs. Because the planner in a planning
environment frequently provides the scheduler new
constraints, the scheduler must validate them taking into
account the plan they belong to. We have presented an easy
way to manage all the constraints of the problem, both
temporal constraints and resource usage constraints. They
are managed by three very similar levels: action level,
resource level and attribute level. In addition, we have
discussed two ways to manage the temporal constraints:
maintaining the derived constraints and maintaining only the
input ones. Currently, we are working on nonpropagation
techniques which allow us to retract constraints in a very
efficient way. We are also studying the possibility of adding
more expressive temporal constraints to the scheduler
(Jonsson and Bäckström 1998).

ACKNOWLEDGEMENTS
This work is proposed in the Intelligent Planning &
Scheduling Group of the Polytechnic University of Valencia
(http://www.dsic.upv.es/users/ia/gps) and partially
supported by the grant CICYT/TAP98-0345 from the
Spanish government.

REFERENCES
Bäckström, C. 1998. Computational Aspects of Reordering
Plans. Journal of Artificial Intelligence Research 9, 99-137.

Barber, F. 2000. Reasoning on complex disjunctive
temporal constraints. Journal of Artificial Intelligence
Research 12, 35-86.

Barret, A.; Christianson, D.; Friedman, M.; Golden, K.;
Penberthy, S.; Sun, Y.; and Weld, D. 1996. UCPOP v4.0
user’s manual, Technical Report TR 93-09-06d. Dept. of
Computer Science and Engineering, University of
Washington, Seattle, WA.

Beck, H. 1993. TOSCA: A novel approach to the
management of job-shop scheduling constraints. Realising
CIM’s Industrial Potential: Proceedings of the Ninth CIM-
Europe Annual Conference, 138-149.

Beck, H.; and Tate, A. 1995. Open Planning, Scheduling
and Constraint Management Architectures. The British
Telecommunication's Technical Journal, Special Issue on
Resource Management.

Boddy, M. 1993. Temporal Reasoning for Planning and
Scheduling. SIGART-ACM Bulletin 4(3), 17-20.

Currie, K.; and Tate, A. 1991. O-Plan: The open planning
architecture. Artificial Intelligence 52(1), 49-86.

Dean, T.L.; Greenwald, L.; and Kaelbling, L.P. 1994. Time-
Critical Planning and Scheduling Research at Brown
University. Technical Report CS 94-41. Dept. of Computer
Science, Brown University.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49, 61-95.

Dorn, J.; and Froeschl, K. eds. 1993. Scheduling of
Production Processes. Ellis Horwood.

El-Kholy, A.; and Richards, B. 1996. Temporal and
Resource Reasoning in Planning: the parcPLAN approach.
ECAI 96, 12th European Conference on Artificial
Intelligence, 614-618.

Ghallab, M.; and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In Hammond, 61-67.

Garrido, A.; Marzal, E.; Sebastiá L.; and Barber, F. 1999.
Un Modelo de Integración de Planificación y Scheduling. In
Proceedings of CAEPIA’99 1(3), 1-9.

Gervasio, M.; and DeJong, G. 1992. A Completable
Approach to Integrating Planning and Scheduling. Artificial
Intelligence Planning Systems: Proceedings of the First
International Conference (AIPS 92), pp. 275-276, Morgan,
Kaufmann.

Jonsson, P.; and Bäckström, C. 1998. A unifying approach
to temporal constraint reasoning. Artificial Intelligence
(102), 143-155.

Kumar, V. 1992. Algorithms for Constraint Satisfaction
Problems: A Survey. AI Magazine 13(1), 32-44.

Laliberty, T. J.; Hildum, D. W.; Sadeh, N. M.; McA’Nutty,
J.; Kjenstad, D.; and Smith, S. F. 1996. A Blackboard
Architecture for Integrated Process Planning and Production
Scheduling. In Proceedings of ASME Design for
Manufacturing Conference, Irvine, CA.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. Morgan Kaufmann, San Mateo, CA.

Penberthy, S.; and Weld, D. S. 1992. UCPOP: A sound,
complete, partial-order planner for ADL. In Proceedings of
the 1992 International Conference on Principles of
Knowledge Representation and Reasoning, 103-114.
Kaufmann, Los Altos, CA.

Sadeh, N. M.; and Fox, M. S. 1996. Variable and value
ordering heuristics for the job shop scheduling constraint
satisfaction problem. Artificial Intelligence 86, 1-41.

Salido, M.A; Garrido, A.; and Barber. F. 2000. Evaluation
of Algorithms to Satisfy Disjunctive Temporal Constraints
in Planning and Scheduling Problems. To appear in
Symposium on AI Planning and Intelligent Agents (AISB-
2000).

Smith, S. 1993. Integrating Planning and Scheduling:
Towards Effective Coordination in Complex, Resource-
Constrained Domains. Italian Planning Workshop, Rome,
Italy.

Smith, S. F.; Lassila, O.; and Becker, M. 1996.
Configurable, Mixed-Initiative Systems for Planning and
Scheduling. In Advanced Planning Technology. Menlo
Park, AAAI Press.

Srivastava, B.; and Kambhampati, S. 1999. Efficient
Planning Through Separate Resource Scheduling. AAAI
Spring Symp. on Search Strategy under Uncertain and
Incomplete Information.

Tate, A. 1996. Representing Plans as a Set of Constraints –
the <I-N-OVA> Model. In Drabble, B., ed., Proc. Third
Conference on Artificial Intelligence Planning Systems
(AIPS 96), 221-228.

Tsang, E. 1993. Foundations of constraint satisfaction.
Academic Press.

Verfaillie, G.; de Givry, S.; and Lesaint, D. 1999. What is
New in On-Line Scheduling? In On-line scheduling
characteristics (Working document). Available in
http://www.lcr.thomson-csf.fr/projects/planet/ols-tcu.html.

