
Defeasible-Argumentation-based Multi-Agent Planning

Sergio Pajares Ferrando∗, Eva Onaindia

Dpto. de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera s/n, E46022-Valencia (Spain)

Abstract

This paper presents a planning system that uses defeasible argumentation
to reason about context information during the construction of a plan. The
system is designed to operate in cooperative multi-agent environments where
agents are endowed with planning and argumentation capabilities. Planning
allows agents to contribute with actions to the construction of the plan,
and argumentation is the mechanism that agents use to defend or attack
the planning choices according to their beliefs. We present the formaliza-
tion of the model and we provide a novel specification of the qualification
problem. The multi-agent planning system, which is designed to be domain-
independent, is evaluated with two planning tasks from the problem suites
of the International Planning Competition. We compare our system with
a non-argumentative planning framework and with a different approach of
planning and argumentation. The results will show that our system obtains
less costly and more robust solution plans.

Keywords: Defeasible Argumentation, Multi-Agent Planning,
Multi-Agent Systems, Cooperation

1. Introduction

One common problem in Artificial Intelligence (AI) is to select the best
course of action for an agent; i.e, reasoning about what to do. This prob-
lem has been primarily addressed from two standpoints: the knowledge or
epistemological perspective, which puts the emphasis on the representation

∗Corresponding author
Email addresses: spajaresf@gmail.com (Sergio Pajares Ferrando),

onaindia@dsic.upv.es (Eva Onaindia)

Preprint submitted to Information Sciences. April 27, 2017

of the world such that the solution of a problem follows from the represen-
tation; and the reasoning or heuristic perspective, mostly concerned with
the information for solving the problem and reasoning on an abstract and
formal representation of the world [23]. Practical reasoning, a research line
primarily focused on the epistemological view, includes a great deal of epis-
temic reasoning, directed at determining what to believe [10, 19]. Automated
planning, on the other hand, is concerned with the computational process
for the selection and organization of the actions. Back in the 90’s, Pollock
concluded that since epistemic cognition is defeasible, a planning agent must
be prepared to revise its plans as its defeasibly held beliefs change, and it
may have to acquire more information through reasoning to solve a planning
problem [35].

The mainstream in practical reasoning lies in the use of argumentation
theory so as to extend the means-end reasoning in classical planning with
presumptive justifications for the adoption of a particular action. The pre-
dominant approach in practical reasoning relies upon Dung’s argumentation
framework over beliefs [13] such as proposals for arguing about the desires an
agent should adopt and the plans the agent will intend in order to achieve
those desires [37]; the study of the goal deliberation process [20]; or the
generation of consistent plans from a set of conflicting beliefs [3]. Building
argumentation plans for negotiating conflict resolution at a planning stage is
also an interesting application of argumentation in practical reasoning [25].
Some other works, however, follow the notion of argument scheme proposed
by Walton [47] and present an approach in which arguments and conflicts
are represented as argument schemes and critical questions, respectively [5].
This latter work has been one of the most popular approaches in practical
reasoning, it has demonstrated its applicability in domains such as law, ex-
perimental economics or e-democracy [4, 12, 9] and it has also been exploited
for the design of argumentation-based dialogues to support automated co-
ordination in distributed planning [24], multi-agent deliberation dialogues
[21] or the construction of joint plans [38].

Unlike argumentation-based approaches of practical reasoning, another
line of investigation closer to planning also explores the relationships be-
tween classical planning and argumentation, building on a planning formal-
ism and using argumentation to guide the reasoning process. A first step
in this direction assumes that agent’s deductions are not always certain in-
formation, but plausible, and the conclusions can be withdrawn when new
pieces of knowledge are found; i.e., agents must use defeasible reasoning
[34]. OSCAR is a goal-regression planner that essentially performs the same
search of Partial-Order Planning (POP) but reasoning defeasibly about can-

2

didate plans at the end of the planning process [36]. In OSCAR, the search
of a plan is also done defeasibly, thus enabling to reason about the impact of
unexpected environmental conditions on the solution plans as well as select-
ing the plan which is less likely to fail at execution time. In the same line,
another pioneer work presents a formal model of plans based on a defeasible
argument system that is able to suggest aspects of a plan, criticize and re-
vise the plan [14]. Both of these investigations, considered as the first steps
towards building an argumentation-based planning system, have close sim-
ilarities to the works on plan modification and replanning but rather than
enforcing the planner to resort to replanning in light of new information,
they consider planning within the context of a general defeasible reasoning
system.

More recently, Simari et al presented a defeasible argumentation frame-
work for the definition of actions and the combination of these actions into
plans [40]. This work lays the foundations of an argumentation-based for-
malism for constructing plans [17] by using Defeasible Logic Programming
(DeLP) [15], a formalism that agents use to represent and deal with incom-
plete and contradictory information in dynamic domains. The formalism
presented in [17], which we will refer to as DeLP-POP in the following, de-
scribes how the traditional POP algorithm is extended to consider arguments
as planning steps.

Subsequently, further investigations on argumentation-based planning
focused on the application of argument-based systems to Multi-Agent Plan-
ning (MAP). An argumentation-based dialogue protocol that enables agents
to discuss candidate plans and reach agreements was proposed in [8, 7].
In this work, candidate plans of the agents are generated by an external
single-agent planner and the protocol is used for reasoning about the con-
tradictory planning beliefs in the candidate plans and select a valid solution
plan. Agents in [8, 7] use argumentation to defend or attack the candidate
plans put forward by other agents, but not for cooperatively building a plan
contributed by multiple agents. Another interesting work that exploits the
benefits of using argumentation in MAP emphasizes the utilization of argu-
mentation to solve conflicts between sub-plans of different agents by means
of deliberative dialogues based on argumentation schemes [43, 44]. Con-
flicts may be caused by concurrent actions, plan constraints or norms that
the agents must adhere to, and argumentation is used to analyze the con-
flicts that arise when several sub-plans of different agents are to be merged.
Likewise, in this approach argumentation is not used for building a plan -
this is accomplished by an external planner-, but for arguing at end of the
planning generation. A different approach that also makes use of argumen-

3

tation schemes proposes structured argumentative dialogues to coordinate
plan-related tasks [24]. In this proposal agents coordinate their beliefs and
intentions using a dialogue game based on an argumentation scheme and its
critical questions. Authors propose a strategy to choose relevant questions
so as to improve the efficiency of dialogues and they empirically prove the
benefits of the approach in identifying the points of disagreement to come
to an agreement on the best plan.

On the other hand, the first formal extension of DeLP-POP to a multi-
agent context wherein agents are assumed to have planning and argumenta-
tion capabilities is presented in [31]. Specifically, this work proposes a formal
dialogue for an incremental argumentative plan search, by which agents ex-
change plan proposals and arguments for and against such proposals. To
the best of our knowledge, this work represents the first attempt to use
an argumentation-based MAP mechanism for a cooperative construction of
plans. Subsequently, the works in [30, 28, 29] present the evaluation of the
formal approach in some practical domains like a transit journey planning
service and ambient intelligent applications.

In this paper, we present the formalization of Q-DeLP-POP1 and its
extension to a MAP environment (Q-DeLP-MAP), an argumentation-based
MAP system that elaborates on two previous contributions: an initial for-
malization of a multi-agent argumentative planning model in the framework
of DeLP-POP [31] and a preliminary implementation of such argumenta-
tive MAP model in a domain of ambient intelligent applications [28, 29].
The former version of the argumentation model was able to deal with rich
argumentative representations but exhibited a limited planning capability.
Q-DeLP-MAP, however, greatly outperforms the previous system by exploit-
ing, among other things, the reuse of argumentative dialogues during the
construction of the search tree, which allows us to tackle problems of the
International Planning Competitions (IPC)2. Additionally, Q-DeLP-POP
provides a more sophisticated specification of the qualification problem in
planning, defining novel relationships between argument steps and action
steps of a plan. Overall, the aim of this paper is to put together and ex-
ploit the investigations carried out in [31] and [29] in order to come up with
a domain-independent, fully integrated and operative argumentation-based
MAP model.

This paper is organized as follows. In sub-sections 1.1 and 1.2, we present

1Q stands for Qualification problem [18].
2http://ipc.icaps-conference.org/

4

http://ipc.icaps-conference.org/

the objectives of this work and we highlight the contributions of Q-DeLP-
MAP with respect to former investigations, respectively. Section 2 summa-
rizes the main foundations in which this work is based on. Section 3 presents
in detail the components of our defeasible-argumentation-based planning
framework. Section 4 presents the multi-agent protocol for our planning
framework. Next, the experiments carried out to validate the framework
are described and analyzed in section 5. Finally, we conclude and present
some directions for future work.

1.1. Objectives and Problem Description

This work revolves around the problem of Multi-Agent Planning and,
more specifically, on cooperative planning, wherein multiple entities (agents)
work cooperatively in order to build a plan that solves a common goal.
Under this paradigm, agents are interpreted as entities that have different
planning capabilities (specialized agents) or entities that are geographically
distributed and so they do not have access to all the data of the world. These
different world views and planning capabilities define the agents’ vision of
the planning task.

In classical approaches to MAP, agents only work with the information
defined in the planning task: the facts that describe the initial state of the
world and the actions, which represent the agent capabilities and model the
dynamics and causal relationships of the planning task. Agents apply a
search process over the initial state and infer new facts that represent the
evolution of the world through the application of the actions. Hence, classi-
cal planning approaches assume that the planner (agent) begins with all the
relevant, accurate and necessary knowledge for solving the task. However, in
complex and dynamic environments, it is required to represent and manage
the know-how knowledge of a planning agent; i.e., information other than the
causal inferences drawn from the application of the actions of the planning
task. Our principal objective is thereby extending a traditional MAP task
so that the know-how knowledge of the agents is considered when building
a plan. This new source of information, which stems from the expertise and
beliefs of the agents but cannot be regarded as a universal truth, will be
modeled as defeasible knowledge which is susceptible of change in light
of new information provided by other agents.

The goal of planning is choosing the proper actions to achieve the task
goals according to some optimization criteria. This is done by using the
factual information and known abilities of the agents. The purpose of in-
troducing defeasible knowledge in a planning task is to account for all the

5

external conditions that might potentially affect the execution of an ac-
tion in the real world beyond the conditions defined in the causal model.
Thus, the agents’ defeasible knowledge will be used to conduct the planning
process towards a successful plan execution through a multi-agent argu-
mentation model. Planning agents will use their know-how knowledge
and beliefs of the world to argue about the context in which an action will
be executed and to prevent the action from a potential execution failure. In
some domains, it is crucial to obtain robust plans; i.e., plans that are exe-
cutable despite the uncertainty in the execution environment. For example,
consider a situation in which an ambulance needs to be sent to a place in
an emergency situation. Traditional MAP approaches are not able to take
into account the contextual conditions that might affect the execution of the
action, such as the traffic conditions when driving the ambulance, because
this information is not expressed in the causal theory. Consequently, the
plan might possibly fail during its execution in the real world.

Our argumentation model draws upon a defeasible knowledge reasoner
that allows agents to argue about the contextual conditions that could pre-
vent an action of a plan from being successfully executed. From the planning
standpoint, the goal is to build plans consistent with the causal theory that
defines the dynamics of the world. From the argumentation perspective, the
goal is to obtain plans consistent with the agents beliefs so as to increase the
likelihood of achieving a robust plan. Thereby, the quality of the plans will
be assessed according to the usual planning quality criteria (number of ac-
tions and plan duration) as well as by their level of robustness (minimization
of the risk of unexpected action failures).

The operational framework that we present in this paper requires to de-
sign and build multi-agent dialogues so that each step of the construction
of a plan can be discussed among agents. Specifically, we will design a dia-
logue mechanism by which agents exchange arguments about the conditions
that might affect the feasibility of an action in the real world according to
their know-how knowledge and beliefs. Therefore, agents will not only be
equipped with planning capabilities, but also with argumentation abilities.

Our goal is to obtain more robust plans than the plans returned by tra-
ditional MAP systems (without argumentation); i.e., solutions that demon-
strate that incorporating the know-how knowledge of the agents in the form
of defeasible knowledge allows us to obtain more robust executable plans.
For this purpose, agents will instantiate argumentative dialogues during
planning to reason about each step comprised in the plan.

Finally, we aim for a domain-independent argumentation-based MAP
model, fully integrated and operative. This means that we have not only

6

to design and implement the model but also test it in different applications
domains. Specifically, the framework will be validated with problems from
the IPC benchmarks. We will carry out several experiments considering
various levels of difficulty of the planning and argumentation tasks.

1.2. Contributions of Q-DeLP-MAP

As commented above, Q-DeLP-MAP relies upon former investigations
on argumentation and multi-agent planning. Q-DeLP-MAP represents the
evolution of an approach that started by designing the principles and the-
oretical foundations underpinning a multi-agent extension of DeLP-POP up
to the currently novel version, which is able to tackle general-purpose plan-
ning problems. Table 1 showcases the evolution of Q-DeLP-MAP through
the various contributions along with the contribution of each approach.

The beginning of this work was a joint collaboration with other re-
searchers where we established the theoretical foundations of a multi-agent
extension of DeLP-POP [31]. In this work, the dialogues instantiate an A?

search algorithm that agents use to find a provably optimal solution accord-
ing to their knowledge. MAPA defines the architecture and protocols for a
cooperative distributed planning system based on defeasible reasoning [30].
The stages of the MAPA planning protocol are inherited by Q-DeLP-MAP
but the work in [30] only shows a simple illustrative example on a Transit
Journey Planning Service. Subsequently, we opted for creating an ad-hoc
version of the planning-argumentation framework for Ambient Intelligence
(AmI) Applications [28]. DeLP-MAP-POP featured rather limited planning
capabilities but a rich argumentative model to represent AmI applications.
The last step of this ad-hoc framework was CAMAP [29], which notably im-
proved the performance of DeLP-MAP-POP. The novelty of CAMAP lied in
the exploitation of context-aware information, particularly on the field of
health-care problems. CAMAP was able to solve medium-size instances of
homecare applications with up to 24 actions and 150 defeasible rules.

The motivation of Q-DeLP-MAP is to come up with a general-purpose
planning and argumentation approach. Q-DeLP-MAP enhances the repre-
sentation and management of the qualification problem, it proposes a sepa-
ration of the planning and argumentation conflicts into threats and attacks,
respectively, and includes a Case-Based Reasoning module that significantly
improves the performance of the argumentation process. All these features
together allow us to tackle medium-size domain-independent planning prob-
lems in a variety of domains like space applications, transport or logistics.
To the best of our knowledge, Q-DeLP-MAP is the first domain-independent

7

Approach Main
Contribution

Applicability Performance

Multi-Agent ex-
tension of DeLP-
POP [31]

Formalization of
multi-agent DeLP-
POP

— —

MAPA [30] Planning and Argu-
mentation architec-
ture

Case study: Tran-
sit Journey Planning
Service

—

DeLP-MAP-
POP [28]

Preliminary version
of an operational
framework for [31]
and [30]

Ambient Intelligence
applications

Limited plan-
ning capa-
bilities, rich
argumentative
representations
(small instances
of AmI applica-
tions)

CAMAP [29] Refined version of
DeLP-MAP-POP:
Context-aware MAP
model based upon
an argumentation-
based defeasible
logic

Ambient Intelligence
applications (health-
care)

Medium-size in-
stances of AmI
applications (24
actions, 150 de-
feasible rules)

Q-DeLP-MAP Qualification prob-
lem; Planning and
argumentation con-
flicts; Case-Based
Reasoning

Domain-
independent plan-
ning problems
(space applications,
transport, logistics)

Medium-size
planning prob-
lems (500
actions, 180
defeasible rules)

Table 1: Evolution of prior works and contribution of Q-DeLP-MAP

8

argumentation-based MAP approach that is capable of solving various prob-
lems from the IPC.

2. Preliminary notions

In this section, we summarize the basic notions that will be used through-
out this document.

2.1. DeLP: a framework for defeasible argumentation

Defeasible reasoning is a process where tentative conclusions are obtained
from uncertain or incomplete information and so they may no longer be valid
after new information becomes available [33]. Defeasible Logic Programming
(DeLP) is a popular formalism to make context inferences by using defeasible
argumentation, a particular type of defeasible reasoning applied to single-
agent contexts [15].

In DeLP, the agent’s knowledge base is a pair T = (Ψ,∆), where Ψ is
a consistent set of facts (literals) and ∆ is the set of defeasible rules of the
form δ = ` −� `0, . . . , `n, being ` the head and `0, . . . , `n the body of ∆,
respectively. The non-empty set of literals `0, . . . , `n provides a (defeasible)
reason for ` to be warranted3. Given T , a defeasible derivation of a literal `
from T implies that there may exist information in contradiction with ` that
will prevent the acceptance of ` as a valid conclusion. In general, the set of
derivable literals in T will not be consistent and more than one defeasible
derivation for a literal ` may be found as well as more than one defeasible
derivation against it.

Defeasible argumentation is a form of defeasible reasoning that empha-
sizes the notion of an argument. An argument A for a literal ` of T = (Ψ,∆)
is a subset of defeasible rules, rul(A) ⊆ ∆, such that (i) ` is derivable from
Ψ∪ rul(A); (ii) the set Ψ∪ rul(A) is non-contradictory; and, (iii) rul(A) is a
minimal subset of ∆ satisfying (i) and (ii) [15]. Figure 1 shows an argument
A for a literal `, where [31]:

1) rul(A) = {δ0, δ1}, δ0 = ` −� {p0, p1} and δ1 = p1 −� {q0, q1, q2}

2) base(A) = body(rul(A)) r head(rul(A)); i.e, base(A) = {p0, q0, q1, q2}

3) concl(A) = head(rul(A)) r body(rul(A)); i.e, concl(A) = `

The existence of A for ` (concl(A) = `), given that base(A) ⊆ Ψ, still
does not suffice for ` being warranted; we must guarantee that A is not

3Strict rules introduced in [39, 15] have not been considered in planning (see [17]).

9

http://lidia.cs.uns.edu.ar/delp_client/index.php

Figure 1: An argument A for l composed of two rules δ0, δ1 ∈ rul(A).

defeated by some other argument. More specifically, given two arguments
A0 and A1, where {base(A0) ∪ base(A1)} ⊆ Ψ, we say that A1 attacks A0

if the conclusion of A1 contradicts some literal derived in A0, that is, if
concl(A1)4 ∈ head(rul(A0)). The attack relation may roughly be seen as
symmetric, in the sense that each attacked argument A0 contains a sub-
argument A0′ attacking A1. We use the same formal criterion of specificity
of [15] for deciding the contending argument that prevails in an attack:
the argument that is based on more information content or with less use
of rules (more direct) is a proper defeater or a preferable argument. If two
contending arguments are not comparable in these terms, they are a blocking
defeater to each other5. A counter-argument A1 will either attack concl(A)
or an inner point of A; i.e., body(rul(A)) ∪ head(rul(A)) r concl(A).

Given an argument A0 for `, an argumentation line Λ = [A0, . . . ,An] is a
sequence of arguments constructible from (Ψ,∆), where each argumentAk+1

is a defeater for its predecessor Ak. Arguments supporting (resp. interfering
with) A0 are arguments of the form A2n (resp. A2n+1), they must form a
consistent set, and no sub-argument A′ of an argument Am ∈ Λ may appear
later in Λ (i.e., it cannot be the case of A′ = Am′ with m′ > m) [15, 17].

Given a root argument A, the union of its argumentation lines gives rise
to a tree-like structure, the dialectical tree for A, denoted as TA(Ψ,∆). Fig-
ure 2 shows an example of two dialectical trees. In order to check whether
the argument of the root node (A) is defeated or undefeated, the following

4The set of negated literals of concl(A1).
5Alternatively, other comparison criteria between arguments could be defined along

with a defeat relation induced from the selected preference criterion. See [39] for details.

10

(a) (b)

Figure 2: Computing warrancy for `: (a) TA: A is a defeated argument, and (b) TB: B is
an undefeated argument.

procedure on the dialectical tree is applied [15]: label with a U (for unde-
feated) each terminal node in the tree (i.e. each argument with no defeaters
at all). Then, in a bottom-up fashion, label a node with:{

U if each of its successors is labeled with a D

D (for defeated) otherwise

The application of this procedure returns that A is a defeated argument
in Figure 2 (a), and that B is an undefeated argument in Figure 2 (b).

2.2. POP: Partial Order Planning

Partial-Order Planning (POP) draws upon the least commitment princi-
ple [32, 48], which delays commitment of action orderings until a decision is
necessary to solve some inconsistency. In POP, a plan is represented as a set
of actions and a set of ordering constraints defining a partial order between
the actions. The POP paradigm is a flexible mechanism to deal with the in-
dividual plans of different agents and combine them into a single joint plan.
Since our goal is the integration of planning and defeasible argumentation
in a multi-agent context, we adopt POP as the planning approach of the
agents.

A planning task is defined as a tuple M = (Ψ, A,G), where Ψ is the set
of facts that represent the initial state of the planning task, A is the set of
actions and, G is the set of goal literals. An action α = 〈pre(α), eff(α)〉 is a
set of preconditions (for α to be applicable) and effects.

A POP plan Π, or simply a plan Π, is a 3-tuple 〈A(Π), CL(Π), OC(Π)〉,
where A(Π) is the set of action steps in Π, and CL(Π) and OC(Π) are
the set of causal links and ordering constraints, respectively, between the
action steps of A(Π). A causal link between two actions steps, αi and αj ,

11

is denoted as (αi, `, αj) ∈ CL(Π), meaning that ` ∈ pre(αj) is planned to
be supported by ` ∈ eff(αi). In addition, for a certain pair of action steps
αi and αj , αi may precede αj or viceversa. Such a relationship is called
ordering constraint and is denoted as αi ≺Π αj (or αj ≺Π αi) ∈ OC(Π).
A causal link between two actions defines an implicitly ordering constraint
between both. It is important to note that in a partially ordered set not
every pair of actions need to be ordered: for a given pair of action steps,
it may be that neither action step precedes the other in the plan. In POP,
Ψ and G are encoded as dummy actions αΨ ≺Π αG with eff(αΨ) = Ψ,
pre(αG) = G and pre(αΨ) = eff(αG) = ∅. Finally, the set of unsupported
preconditions of the action steps in Π is called open goals, and it is denoted
as goals(Π).

The elements of A(Π) and CL(Π) may cause the appearance of threats
in a plan. Let’s suppose a causal link (αi, `, αj); and an action β, such that
l ∈ eff(β), which is unordered with respect to αi and αj . A threat, denoted
by (β, (αi, `, αj)), means that the interfering or threatening action β would
invalidate the causal link if β is eventually ordered between the two actions
of the causal link, αi and αj . When detected, threats are to be solved by
some threat resolution step:

• promotion: the action step αj is ordered before β establishing the
ordering constraint αj ≺Π β; this results in the sequence of action
steps αi ≺Π αj ≺Π β

• demotion: the action step αi is ordered after β establishing the or-
dering constraint β ≺Π αi; this results in the sequence of action steps
β ≺Π αi ≺Π αj

The set of all the threats in a plan Π is labeled as threats(Π), and initially,
threats(Π) = 0. The set of flaws of a plan Π includes threats(Π) and goals(Π),
and is denoted as flaws(Π). A plan Π is solution if flaws(Π) = ∅; i.e, if Π is
a threat-free plan and all the goals in G are achieved through a causal link.
If Π is a solution plan, then A(Π) applied over the initial state Ψ leads to a
problem state in which the goals of the task, G, hold.

2.3. DeLP-POP: A first extension of POP with DeLP

DeLP-POP is a theoretical extension of POP with DeLP-style argumenta-
tion [17] in which both arguments and actions are used to resolve goals and
threats. DeLP-POP distinguishes between actions steps and argument steps.
Actions are intended to express the physics of a domain so the effects of an

12

action reflect the changes that will be produced in the world when the action
is executed. However, argument steps represent the conclusion inferred by
an agent according to its local know-how knowledge and partial view of the
world. The novelty of DeLP-POP is that arguments can be introduced in the
plan to support action preconditions. Consequently, the conclusion derived
through an argument may be invalidated if another agent puts forward an
opposite conclusion.

A planning task M is extended in DeLP-POP as a tuple (Ψ,∆, A,G),
where the new element ∆ contains defeasible rules that may apply in any
of the world states that result from the execution of the actions of the plan.
An agent will use the defeasible rules in ∆ for building arguments during the
planning search. Let ` be an open goal, motivated by some step β ∈ A(Π)
or A ⊆ ∆; i.e. ` ∈ pre(β) or ` ∈ base(A). If goal ` is planned to be enforced
by an action α, this is encoded as a causal link of Π and included in the
set CL(Π): (α, `, κ) ∈ CL(Π), with κ = β or κ = A. If ` ∈ pre(β) and it is
enforced by an argument B, this is encoded as a support link of Π, included
in a set labeled SL(Π): (B, `, β) ∈ SL(Π), where B ⊆ ∆.

A plan Π for a DeLP-POP task M, is a 5-tuple 〈A(Π), AR(Π), CL(Π),
SL(Π), OC(Π)〉, where A(Π), CL(Π) and OC(Π) are the same elements of
a POP plan (see section 2.2); AR(Π) represents the set of argument steps
or, more particularly, the utilization of the defeasible rules in ∆ within Π;
and SL(Π) is the set of support links.

In DeLP-POP, arguments are not only introduced to intentionally sup-
port the precondition of an action but they are also used to defeat or defend
other arguments in the plan. When actions and arguments are combined in
a partial-order plan, new types of threats arise [17, 16] (more details on the
DeLP-POP threats are exposed in section 3.2.1).

3. Components of Q-DeLP-POP

In this section, we present a thorough formalization of Q-DeLP-POP,
a novel argumentative planning framework that extends DeLP-POP [17] for
dealing with the qualification problem [18]. The adopted solution to the qual-
ification problem leads to redefine some of the components of the DeLP-POP
framework [17] as well as to introduce new ones. The motivation behind Q-
DeLP-POP stems from the fact that in natural environments the successful
execution of actions can never be predicted with absolute certainty. Un-
expected circumstances, albeit unlikely, may at any time prevent an agent
from performing the intended actions [42].

The qualification problem is concerned with the impossibility of listing
all the preconditions required for a real world action to have its intended ef-

13

fect. Within the planning community, the default choice to the qualification
problem is to assume away the numerous possible unexpected circumstances
that may prevent an action from being executed in the real world and re-
sort to replanning in case a plan turns out not to be executable due to
a non-anticipated condition. Some approaches assume an action is com-
puted without considering the qualifying domain constraints and the action
is taken to qualify if and only if any of the constraints is violated after
the computation is complete [18]. Other methods cope with the qualifica-
tion problem by respecting causality when minimizing anomalous models,
which requires a prior definition of abnormal qualifications and anomalous
models [42]. Our method to overcome the qualification problem during the
construction of a plan relies on the local know-how knowledge of the agent
about anomalous situations. Rather than verifying all unusual situations in
the preconditions of the actions, agents put forward an action to the plan
in the form of an argument so that any other agent possessing information
about a tentative anomalous situation that might prevent the action from
being executed launches an attack against the argument representing the
action. This new semantic representation will be shown hereinafter.

3.1. Action-Argument Steps

Q-DeLP-POP provides a novel representation mechanism of actions, through
which agents are able to attack an action step of the plan if they hold in-
formation about an environmental condition that could potentially prevent
the action from having its intended effects. Given an action α that is to be
inserted in a plan Π as an action step of A(Π), we generate eff(α) through a
defeasible derivation and encode such a derivation as an argument of Π. For
this purpose, Q-DeLP-POP replaces the notion of action step (elements in
A(Π)) by a new compound entity called action-argument step, whereas
it keeps the notion of argument step (AR(Π)) as defined in DeLP-POP.

Definition 1. [Action-Argument Step]. Let α be an action with eff(α) =
` to be inserted in a plan Π. In Q-DeLP-POP, α is inserted in Π as a pair
action-argument γ = 〈α′,A〉. Particularly:

• eff(α′) = µα′, where µα′ is a fictitious and irrevocable effect used to
denote the actual execution of action α′.

• rul(A) = `−�µα′, where base(A) = µα′ and concl(A) = eff(α).

• pre(γ) = pre(α′) = pre(α).

• eff(γ) = concl(A) = eff(α).

14

Action steps are all replaced in Q-DeLP-POP by action-argument steps.
This leads to a redefinition of a plan Π as a 5-tuple 〈AA(Π), AR(Π), CL(Π),
SL(Π), OC(Π)〉, where AA(Π) represents the set of action-arguments in
Π. We will call the set AR(Π) supporting arguments so as to distinguish
them from the arguments comprised in AA(Π), which simply are a type of
fictitious arguments artificially created to transform the effect of an action
into a defeasible derivation.

The introduction of the compound entity action-argument step also im-
plies to revisit the notions of causal link and support link. Specifically, let
γ2 = 〈α′2,B〉 be the action-argument of an action α2, which is represented on
the right of Figure 36; and let pre(γ2) = pre(α′2) = ` be an open goal of γ2;
if ` is supported by the action-argument step γ1 = 〈α′1,A〉 of an action α1,
represented on the left of Figure 3, then Q-DeLP-POP introduces a causal
link (γ1, `, γ2) ∈ CL(Π), as shown in Figure 3.

…

…

Figure 3: Example of causal link (γ1, `, γ2) ∈ CL(Π).

Similarly to DeLP-POP, where a precondition of an action step can be
supported by an argument step, we allow preconditions of action-argument
steps to be likewise supported by supporting arguments. Specifically, let’s
consider the action α2 in Figure 4 represented through the action-argument
γ2. Given ` ∈ pre(γ2), if ` is supported by an argument step C, then Q-
DeLP-POP introduces a support link (C, `, γ2) ∈ SL(Π) and inserts C in the
set AR(Π). This is graphically represented in Figure 4 where the supporting
argument C is used to satisfy pre(γ2).

Finally, as it also occurs in DeLP-POP, a literal p that belongs to the base
of an argument, say p ∈ base(C), can be supported by an action-argument
γ3 = 〈α′3,D〉, thus introducing a causal link (γ3, p, C) ∈ CL(Π), as shown on
the left of Figure 4.

In case that an action α has more than one effect, i.e., eff(α) = {`0, `1, . . . ,
`n}, the corresponding action-argument step is denoted as a 2-tuple γ =
〈α, {A0, A1, . . .}〉, where rul(A0) = `0 −�µα, rul(A1) = `1 −�µα, and so on.

6Note that we represent the effects of α′1 above the rectangle of action α′1 and its
preconditions below.

15

…

…

Figure 4: Example of support link (C, `, γ2) ∈ SL(Π) and causal link (γ3, p, C) ∈ CL(Π).

As we will see in section 3.2.2, representing the effects of an action through
a defeasible derivation instead of a strict derivation as in DeLP-POP, allows
agents to put forward arguments for or against the successful execution of
the action and the achievement of its intended effects.

We say that a literal ` is an open goal in Π, denoted as ` ∈ goals(Π), if
∃γ ∈ AA(Π) | ` ∈ pre(γ) or ∃A ∈ AR(Π) | ` ∈ base(A), and it does not exist
an element in CL(Π) or SL(Π) for the precondition of the action-argument
or an element in CL(Π) for the base of the argument, respectively, that
supports `.

3.2. Conflicting situations

When actions and arguments are involved in the construction of a plan,
new types of conflicting situations are identified and need to be solved.
Unlike DeLP-POP [17, 16], we distinguish two types of conflicting situations
in a plan:

• Threats: they occur between two unordered steps of the plan such
that if one is ordered before the other, the first one invalidates the
application of the second one. Threats need to be solved in order to
ensure the validity or correctness of the plan.

• Attacks: they occur when an agent holds some belief that contradicts
the conclusions of a step of the plan. Attacks arise because of the con-
tradictory information between the agents and they must be handled
so as to have a greater guarantee of a successful plan execution.

While threats are used to validate the plan according to the physics
expressed in the domain of the problem, attacks respond to the contextual
or know-how information held by the agents (beliefs), which is not expressed
in the physics of the domain. Hence, threats are aimed at checking the
validity of the plan while attacks are aimed at checking the executability of
the actions in the plan and the achievement of their intended effects. Next,
we show an example for the ease of understanding.

16

Example 1. In Figure 5(a), the action-argument step γ1 represents the
planning action ’fly plane apn1 from Munich to London’. The argument
step A derives ’apn1 at Munich’ according to the information provided by
the air traffic control tower of Munich airport. The precondition of γ1 is
thus supported by the conclusion of A. In this case, the conflicting situation
occurs when a new action-argument, step γ2, contradicts the support link (A,
apn1-at-Munich, γ1) ∈ SL(Π). This conflicting situation is similar to the
classical notion of threat in POP but in this case γ2 threatens a support link.
On the other hand, Figure 5(b) shows two arguments: argument B1 denotes
there are reasons to believe ’a volcanic and ash cloud’ might happen and
argument B2 denotes that the agent believes ’an airport strike might occur’.
B1 and B2 are not part of the plan since they are not used to support any
open goal of the plan, but they are a consequence of the beliefs of the agents,
which may prevent γ1 from achieving its intended effects. In other words,
agents are saying that there are reasons to believe that these two unexpected
circumstances (’a volcanic ash cloud’ and ’airport strike’) may occur and
prevent the plane from reaching London. This conflicting situation is known
in Q-DeLP-POP as an attack.

(a)

apn1 at Munich

apn1 at London

apn1 at Munich

apn1 at Munich

(b)

apn1 at Munich

apn1 at London

apn1 at Munich

Plan Plan

Figure 5: Example 1: (a) a threat in the plan; and, (b) attacks to the plan.

3.2.1. Threats

A threat happens when some step of the plan threatens the support
provided by another step of the plan. Formally, we define a threat as a tuple
〈k3, (k1, `, k2)〉, where k1, k2 and k3 are action-argument steps or supporting
arguments; k3 is the threatening step which threatens the support (k1, `, k2),
being k1 the step which provides some support to k2. By keeping this
uniform format for all types of threats, a neater threat classification as well
as a simpler definition of the solutions can be defined.

17

Threats in Q-DeLP-POP are classified according to the type of support
which is being threatened: a causal link, a support link or an internal support
of an argument. Given a plan Π, and following the above threat definition
〈k3, (k1, `, k2)〉, we define three types of threats.

Causal Link Threat (CLT). This threat occurs when a plan step threat-
ens a causal link of the plan. Let (k1, `, k2) be a causal link; then, k1 is an
element in AA(Π), k2 is an action-argument or a supporting argument of
the plan and k3 is always an action-argument step because k3 is threatening
a causal link of the plan. The causal link (k1, `, k2) can be any of the causal
links represented in Figures 3 and 4. In the first case, the CLT represents a
classical POP threat. In the second case, k2 is a supporting argument. In
both cases, the threat is solved by applying demotion or promotion. Our
CLTs are denoted as action-action and action-base threats in [16].

Support Link Threats (SLT). This threat occurs when a plan step
threatens a support link of the plan. Let (k1, `, k2) be a support link where
k1 ∈ AR(Π) and k2 ∈ AA(Π). In this case, k3, the threatening step, is an
action-argument or a supporting argument. The former case is shown in
Figure 6(a), where k1 = B, k2 = γ2 and k3 = γ3. This threat is solved by
applying promotion (γ2 ≺Π γ3). The case in which k3 ∈ AR(Π) is shown
in Figure 6(b). The threatening step is k3 = C, which has been introduced
in the plan to support the precondition of some other action (this is not
graphically represented). Although the appearance of C in the plan can be
interpreted as an interference with other steps of Π, this type of threat is
not solved until base(C) is supported by an action-argument since ordering
constraints are only established between action-arguments. This does not
entail any drawback since the resolution of threats, as potential conflicts
they are, can be postponed in the problem-solving process. The solution to
this threat is to insert the ordering constraint (γ2 ≺Π γ5). The threat in
Figure 6(a) is denoted as an action-argument threat in DeLP-POP; and the
threat in Figure 6(b) is included in the argument-argument threat definition
of DeLP-POP.

Internal Support Threats (IST). This threat occurs when a plan step
threatens an internal literal derived by some argument step of the plan. The
two situations that arise as an IST are depicted in Figures 6(c) and 6(d).
In both cases, k1 ∈ AR(Π), k2 ∈ AA(Π). The support (k1, `, k2) is not
of the form of a link but an internal literal n in the supporting argument
k1 = B that is necessary to derive the conclusion ` for k2 = γ2. In case
6(c), k3 = γ3 is the threatening step (n is an internal literal derived in the
argument step B), and the solution to this threat is to insert the ordering

18

constraint (γ2 ≺Π γ3). In case 6(d), the solution also involves the application
of promotion through the ordering constraint (γ2 ≺Π γ5). The ISTs are
included in the action-argument and argument-argument threats of DeLP-
POP since this framework does not make any distinction in the type of
support that is being threatened.

(a) (c)(b) (d)

Figure 6: Examples of threats of type SLT and IST.

The work in [16] introduces one more type of threat called action-assump-
tion, in which an action threatens the base of an argument even though the
base is not warranted yet (this is the reason why it is so-called assumption).
However, under our threat definition, a threat does not exist until a support
is explicitly introduced in the plan; that is, until the base of the argument is
warranted via action-arguments, in which case it would become a CLT and
would be solved by promotion or demotion. It has been proved that many
potential threats can actually be delayed until the end [41] and in practice
many planners adopt threat deferral as a flaw selection strategy [48, 41]. The
inclusion of supporting arguments in the threat machinery does not change
this circumstance because the no-argument-supports-argument policy im-
plies that any threatening or threatened supporting argument is involved in
a threat as long as its base is supported by an action-argument.

3.2.2. Attacks

Attacks are conflicting situations that happen in a plan as a notice issued
by an agent that some unexpected circumstances may affect the executabil-
ity of an action in the plan. Attacks are based on the contextual information
or beliefs of the agents and they are identified in order to provide a stronger

19

guarantee of success of the plan at execution time.
Formally, given a plan Π, we define an attack as a tuple 〈A0, {A1, . . . ,An},

Ψ〉, where:

• A0 is an argument of Π, either a supporting argument (AR(Π)) or a
fictitious argument of an action-argument (AA(Π)).

• {A1,A2, . . . ,An} is the set of attacking arguments such that A1 at-
tacks A0, A2 attacks A1, and so on.

• Ψ is a set of literals that denote the activation context for the attacking
arguments within the plan7.

The first two elements of the tuple form an argumentation line [A0, A1,
A2, . . .An] as defined in section 2.3.

Example 2. Let’s suppose an emergency situation where the system de-
mands a plan to move an ambulance from the hospital to the patient’s home.
An agent believes that the traffic congestion in the road that connects the
hospital and the patient’s home may prevent the ambulance from arriving in
time. This contextual information about the traffic condition is very helpful
to build a plan with guarantee of being successfully executed; that is, that the
ambulance will be at the patient’s home in time [28].

Formally, given an agent whose knowledge base is T = (Ψ,∆), it can
build an argument A1 in T that attacks an argument A0 of a plan Π if the
conclusion ofA1 contradicts some literal derived inA0; that is, if concl(A1) ∈
head(rul(A0)) (see section 2.1). Particularly, in Example 2, the agent builds
an argument A1 such that concl(A1) =’ambulance not on time’ contradicts
concl(A0) =’ambulance on time’ given that both arguments use the same
road between the hospital and the patient’s home (base(A0) ∪ base(A1) ⊆
Ψ) and the agent is aware of a congestion situation in such a road. This
attack is represented as 〈A0, {A1},Ψ〉 where: A0 is the argument of Π;
A1 is the attacking argument; and, Ψ is the set of literals where body(A1)
is warranted. Additionally, an argument A2 against A1 can be built in
Example 2 if, for instance, an agent also holds an additional information of
the existence of a fast track lane to avoid the traffic congestion. In this case,
the argument A2 constructible in (Ψ,∆) is a defeater of argument A1. The
new tuple defining the attack would be 〈A0, {A1,A2},Ψ〉 and [A0, A1, A2]
would be the argumentation line. Note that the attacking arguments A1

7The meaning of Ψ is the same as in the knowledge base T = (Ψ,∆) of an agent but
here it is referred to a particular context of the plan Π.

20

and A2 do not support any item in goals(Π) since they are merely agents’
beliefs specifically used to attack or defend A0.

An initial attack of an argument A1 against an argument A0 of a plan
Π is represented in Figures 7(a), 7(b), 7(c) and 7(d). The four figures
feature the attack 〈A0, {A1},Ψ〉, where A0 is the fictitious argument of γ1

in Figures 7(a) and Figure 7(d), and a supporting argument (A0 ∈ AR(Π))
in Figures 7(b) and Figure 7(c). Particularly, in Figure 7(b), A1 is attacking
` ∈ concl(A0); and, in Figure 7(c), A1 is attacking n, an internal literal
of A0. This different attacking point to the argument A0 does not make
any difference in the semantics of the attack. Although not graphically
represented in Figure 7, an argument A2 could in turn attack A1, thus
giving rise to the attack tuple 〈A0, {A1,A2},Ψ〉.

It is important to note that all the attacking arguments {A1,A2, . . . ,An}
have to be activated in the same context Ψ of the plan Π; that is, base(A1),
base(A2), . . ., base(An) have all to be warranted in Ψ, which in turn depends
on the plan step to which argument A0 is giving support (for instance,
in Figure 7, argument A0 is giving support to the action-argument γ2).
The activation of the attacking arguments is explained in detail in the next
section.

(a) (c)
Plan

(b)
Plan Plan

(d)
Plan

…

Figure 7: Examples of types of attacks.

Given a root argument A0, the union of its argumentation lines form a
tree-like structure, the dialectical tree for A0, as explained in section 2.1. In
order to evaluate the root argument, the same labeling procedure described
in section 2.1 is applied. At the end, A0 will be labeled as U (undefeated)
or D (defeated). If A0 is labeled as U, it means there is no evidence against
the conclusions of A0. Otherwise, agents will consider that there are reasons
to believe that conclusions of A0 might not be achieved.

21

3.3. Activation of Attacking Arguments

The two attacking arguments A1 and A2 of Example 2 must be con-
structible in (Ψ,∆), meaning that the base of both arguments is to be war-
ranted in Ψ. Therefore, we need to check that the base of the attacking
arguments for or against an argument A0 of Π is warranted in the state of
the plan step to which A0 is giving support. That is, an attack or defense
to A0 affects the plan step being supported by A0 and, consequently, the
arguments must be activated in the same context in which the correspond-
ing plan step would be executed. In order to prevent an attacking argument
from a false activation, we need to define a specific procedure to compute
’the state of a plan step’.

In state-based planning, a plan is a linear sequence of actions and the
consistent state that holds before each action is known. However, a partial
order plan Π is a set of actions whose execution ordering ≺Π is only par-
tially specified, thus encoding multiple linear plans. Hence, POP does not
explicitly represent state information associated to the actions in the plan.

Since states are not explicitly represented in POP, Q-DeLP-POP calcu-
lates, for each γ ∈ AA(Π), the possibly inconsistent set of literals planned
to occur before γ. Specifically, in [31], we presented the problem of identi-
fying possible states in a partial plan with the notion of proto-state. The
proto-state (also known as Cutsets in [26]) of an action-argument step γ can
be seen as the set of literals that may hold before γ.

The set of proto-states of a plan must be continuously updated every
time a step or an order constraint is inserted into the plan. As the plan
search progresses, the proto-states will better match the final states that
will result from the execution of the solution plan.

Definition 2. [Q-DeLP-POP Proto-State]. Let Π be a plan for M, and
γ, γ′, γ′′′, . . . ∈ AA(Π). In Q-DeLP-POP, the proto-state of an action-argument
step γ in Π, labeled as sγ, is comprised by8:

sγ = {` ∈ Lit | ∃γ′ ∈ AA(Π), ` ∈ eff(γ′) and ≺Π ∪{〈γ′, γ〉} is consistent,

and ∀γ′′ ∈ AA(Π), if ` ∈ eff(γ′′) then {〈γ′, γ′′〉, 〈γ′′, γ〉} * tc(≺Π ∪{〈γ′, γ〉})}

Figure 8 shows an example of a partial plan with five action-argument
steps. The proto-state of γ5, i.e., the set of literals that can possibly occur
before γ5 is sγ5 = {p, q, q}, where: p is part of sγ5 due to the ordering
constraint (γ2 ≺Π γ5); p is not included in sγ5 because eff(γ2) denies eff(γ1)

8We use tc to refer to the transitive closure

22

and (γ1 ≺Π γ2); and, q and q are part of sγ5 because 〈γ3, γ5〉 and 〈γ4, γ5〉
are possible relations consistent with OC(Π). Following Definition 2, we
observe that 〈γ3, γ4〉 belongs to the transitive closure of the relations in the
plan but 〈γ4, γ5〉 does not, reason why q ∈ sγ5 . Note that Figure 8 shows a
proto-state, sγ5 , that contains an inconsistent set of literals.

…

…

Figure 8: Example of the proto-state sγ5 = {p, q, q}.

Back to Figure 7, the base of the attacking argument A1 needs to be
warranted in the proto-state of the action-argument γ2. This is graphically
shown in Figure 7 by a cloud drawn under A1. Therefore, the tuple of the at-
tack 〈A0, {A1,A2},Ψ〉 (A2 is not graphically represented) is now replaced by
〈A0, {A1,A2}, sγ2〉 to ensure that all the attacking arguments are warranted
in the proto-state of γ2, the action-argument supported by A0. Addition-
ally, in Figure 7(d), we have that (γ1, `,B) ∈ CL(Π) and (B, z, γ2) ∈ SL(Π).
In this case, the proto-state or activation context of A1 would also be sγ2 .
The reason is that an attacking argument represents a belief of an agent
against a successful execution of an action so, ultimately, the target of an
attacking argument is always an action-argument step. This is also con-
firmed by Definition 2, where proto-states are only formed by the effects of
the action-argument steps, and hence γ1 would be indirectly supporting γ2

in this example.

4. Cooperative Planning Protocol

In this section, we present the extension of Q-DeLP-POP to a Multi-
Agent Planning (MAP) scenario, hereinafter labeled as Q-DeLP-MAP.

4.1. Multi-Agent Planning Task

Agents in Q-DeLP-MAP are entities of the problem equipped with plan-
ning and argumentation capabilities, each having its own planning and con-
textual information. A MAP task is composed of a finite non-empty set of
n cooperative agents denoted as AG = {Ag1 . . .Agn}. Given a MAP task M,

23

each agent will have a different and local view of the task, MAgi = 〈ΨAgi ,
∆Agi , AAgi , G〉:

• ΨAgi ⊆ Ψ represents the partial view of the initial state of agent Agi
such that Ψ =

⋃
∀Agi∈AG

ΨAgi is a consistent set.

• ∆Agi ⊆ ∆ is the set of defeasible rules of agent Agi such that ∆ =⋃
∀Agi∈AG

∆Agi is a set of possibly contradictory rules.

• AAgi ⊆ A is the set of planning actions of agent Agi such that A =⋃
∀Agi∈A

AAgi .

• G is the set of goals of the MAP task. Unlike the rest of elements, G
is known to all the agents.

Q-DeLP-MAP is aimed at solving cooperative planning tasks where agents
contribute to creating the plan with their planning actions and to ensuring
the executability of the plan through their defeasible rules. Thus, agents in
a MAP task jointly solve G and help discover the non-anticipated conditions
that might prevent the plan from being executable.

A relevant aspect in a multi-agent system is the notion of privacy. Given
two agents, Agi and Agj , they can share none, some or all of the planning
actions, defeasible rules and facts of the initial state. If Agi and Agj are
functionally distributed entities, they will have different planning capabili-
ties. If Agi and Agj are spatially distributed entities, they will have different
knowledge of the initial state and subsequent states of the problem. In ei-
ther case, privacy is implicit in the definition of each MAgi . Cooperation
in Q-DeLP-MAP implies that agents need each other in order to solve the
goals of the MAP task or that they can rather accomplish the task better
by working together [46].

If a literal l is private to agent Agi then l is not shared with any other
agent and l can only be used by Agi during the plan construction and ar-
gumentative evaluation. The more private information of the agents, the
less interaction between them during planning and argumentation. For this
reason, in Q-DeLP-MAP scenarios, it is important that as much information
as possible is labeled as public in order to promote argumentation as a co-
ordination mechanism that enable agents to contrast their beliefs about the
world towards a successful achievement of an executable plan.

Specifically, the existence of public information is more concerned with
Ψ, the initial world state, and the successive planning states generated along
the plan construction. However, it is commonly accepted that two agents

24

Plan Generation

Plan Argumentation

Plan and Goal

Selection

Case-based Reasoning

START

END

P
L

A
N

N
IN

G
 &

 A
R

G
U

M
E

N
T
A

T
IO

N
Solution

Plan

UNDEFEATED

?

?
YES

YES

NO

NO

?
YES

NO

Plan Evaluation

Figure 9: Main algorithm of Incremental Plan Construction in Q-DeLP-MAP.

have different planning capabilities (as commented above) and different de-
feasible rules. For instance, Agi can possess information that allows the
agent to infer the traffic condition whereas Agj has defeasible information
about the weather. Note also that, in Q-DeLP-MAP, planning data as well
as the agents’ beliefs denote defeasible information since, unless some pri-
vacy is involved, planning and contextual information can be refuted by the
rest of the agents.

4.2. Multi-Agent Search Protocol

Figure 9 outlines the three main stages of the Q-DeLP-MAP protocol:
plan and goal selection, plan generation and plan evaluation. Given a plan-
ning task M, and a set of agents AG, the Q-DeLP-MAP protocol starts with
an initial empty plan, Π0 = {αΨ ≺ αG}, and agents progressively search
through the space of plans (POP tree). At each iteration of the protocol,
agents collaboratively select a node of the POP tree and expand it. The
process finishes when a solution plan is found; i.e., a plan in which all step
preconditions are necessarily true. The final goal of Q-DeLP-MAP is to re-
turn a solution plan with guarantees of a robust execution in the real-world.

Unlike other approaches, Q-DeLP-MAP successively interleaves planning
and argumentation so as to build a plan incrementally. Once a plan Π is
selected by the agents, and unless Π is labeled as a solution plan, agents
select an open goal Φ of Π. Then, Π is expanded in the plan generation
stage, where agents put forward and exchange refinement plans of Π that
tentatively solve Φ. Subsequently, agents evaluate each plan proposal by
arguing the unexpected circumstances that may occur in the context of the
proposal.

4.2.1. Plan generation

A refinement plan is a plan proposal put forward by an agent as a result
of expanding a selected plan Π when solving an open goal Φ. This stage fol-
lows a process similarly to a plan-space planning process that builds a POP

25

tree, except that each refinement or successor of Π can be now generated
by a different agent and can contain arguments to support the action pre-
conditions or arguments bases. Agents exchange their refinements between
each other and learn the new steps, literals and links of the plan, which they
keep in their local POP tree.

In a previous multi-agent version of DeLP-POP [31], agents engage in
a turn-based dialogue permitting agents to jointly discover threats to any
argument step of a refinement plan. However, in Q-DeLP-MAP, as explained
in section 3.2.1), threats caused by an argument step A are not solved until
base(A) is supported, thus enabling any other agent of AG to insert action-
arguments in the plan to support base(A) and solve the threat by promotion
or demotion. This is consistent with the partial-order structure of the plan
and, consequently, with the local information held by the agents. Subse-
quently, agents will learn the new ordering constraints and will update their
local POP tree accordingly. Additionally, unlike [31], Q-DeLP-MAP gener-
ates threat-free refinements of Π; that is, if an agent finds a threat in one
of its refinements, the agent solves the threat before exchanging the new
proposal with the rest of the agents.

The coordination protocol of Q-DeLP-MAP for agents to exchange their
plan proposals is based on a democratic leadership where a leadership baton
is scheduled among the agents following a round-robin strategy. Once the
baton agent has sent its refinements to the rest of the agents and acknowl-
edgment is received, the coordination stage is completed, and the baton is
handed over to the following agent. Thus, an agent can only intervene when
it holds the baton, and it is listening the rest of the time. The process is
repeated until all the agents have once taken the baton role.

4.2.2. Plan evaluation

Evaluating a plan and analyzing its executability in the real world ac-
cording to the agents’ beliefs is performed via two protocols: Plan Argumen-
tation and Case-Based Reasoning (CBR). In the Plan Argumentation stage,
agents engage in a series of argumentative dialogues aimed at evaluating
the guarantee of a successful execution of the plan proposal. Specifically,
argumentation occurs in the context of the agents’ beliefs and arguments to
defend or attack the plan proposal are built. Subsequently, the CBR will
register the argumentative case in order to be able to re-use it in further
evaluations.

Given a refinement or plan proposal Πr, agents generate as many ar-
gumentative dialogues as supporting arguments and action-argument steps
are present in Π. Let AAgi be one argument of Πr, where Agi is the agent

26

that inserted A in Πr, and let γ be the action-argument which A is giving
support to. The argumentative dialogue to evaluate AAgi is encoded as a
dialectical tree T AAgi

Πr
(see Section 2.1). Nodes of T AAgi

Πr
are labeled with an

argument that attacks the argument in its parent node and which base is
supported in the proto-state sγ . More specifically:

1. The root node of the tree is labeled with AAgi such that AAgi ∈
AR(Πr) or 〈α′,AAgi〉 ∈ AA(Πr). The argumentative process iden-
tifies the action-argument γ of Π supported by AAgi and creates the
corresponding proto-state, sγ .

2. A child node BAgj of AAgi represents an attacking argument against
AAgi ; i.e., BAgj is a defeater of AAgi . Consequently, children of AAgi

stand for defeaters of the root argument AAgi .

3. A child node CAgz of BAgj indicates an attack against BAgj , so this
new node is actually a supporter of the root argument AAgi .

4. And so on.

The above process creates an argumentation line 〈AAgi , {BAgj , CAgz , . . .},
sγ〉 of T AAgi

Πr
. A dialectical tree is generated for each argument in Πr and

the leaves of the tree are undefeated arguments. Unlike the dialectical trees
of a general argumentative process [15], the nodes in our dialectical tree
are supported in the proto-state of the action-argument supported by the
root argument. Every linear path from the root to a leaf node corresponds
to one different acceptable argumentation line. Circular argumentation is
avoided by applying that no argument can be reintroduced in the same
argumentation line and that argument concordance must be guaranteed [15].

Similarly to the Plan Generation phase, agents can only adopt one role,
namely, the baton agent or the participant agent, during the argumentative
process, and the roles are iteratively swapped. The baton agent is the agent
that inserted the argument in Πr and it is the responsible for the construc-
tion of the dialectical tree. The baton agent is also allowed to put forward a
self-attacking argument as well as processing the attacking/supporting argu-
ments of the rest of agents in the dialectical tree. The Plan Argumentation
phase of a particular argument ends when an argumentative round with no
new attacking arguments is detected.

Plan argumentation is applied to every argument in all nodes of a POP
tree. Let Πr be a node which is expanded into a child node Π′r. All the
evaluated arguments in Πr will be also comprised in Π′r. Since the structure
of a partial-order plan changes along its construction, the proto-state of
some action-arguments in Π′r may have changed too while others may have
not with respect to Πr. Thus, it seems convenient to store the results of

27

the Plan Argumentation so as to re-use them in the evaluation of refinement
successors.

Case-Based Reasoning (CBR) systems allow agents to learn from their
experiences [1]. Q-DeLP-MAP uses a CBR module with the only objective
of improving the performance of the plan evaluation. A case in the argu-
mentation database is a 4-tuple structure 〈A, TA, sγ , r〉, where A is the root
argument, TA is the dialectical of A; sγ is the proto-state of γ, the action-
argument directly or indirectly supported by A; and, r is the result of the
evaluation of A, that is, D (defeated) or U (undefeated). Whenever an ar-
gument is evaluated, a new 4-tuple case is inserted in the argumentation
database. Likewise, before evaluating an argument of a plan refinement, we
query the database to search for a similar past experience. If a similar case
is found, the Plan Argumentation protocol is not executed and the step is
directly labeled with r. Otherwise, a new argumentation phase is launched.

4.2.3. Plan and Goal Selection

An open goal from goals(Π) is selected through a heuristic function that
calculates the most costly goal according to a reachability analysis based on
the relaxed planning graph (RPG) of the planning task [11]. Specifically,
the cost of a goal g, cost(g), is estimated as the first literal level of the RPG
where g appears. This is clearly an underestimation of the real cost of g since
cost(g) only accounts for the number of actions necessary to reach g from
the initial situation with no regard of the cost of the actions preconditions
or the possibly negative interactions among the actions in the plan.

As for the plan selection, Q-DeLP-MAP applies first a warranty pro-
cedure to discard the plans evaluated as defeated in the plan argumenta-
tion phase. Subsequently, the undefeated plans are estimated according
to h(Π) = cost(goals(Π)) [26]; specifically, h(Π) is estimated as h(Π) =∑

g∈goals(Π)(cost(g)). The possibly overestimation of this additive heuris-
tic lies in that one same action that achieves the precondition of two or
more actions is counted as many times as needed actions. In contrast, this
overestimation balances out the underestimation of cost(g).

5. Experimental evaluation

In order to analyze the benefits and limitations of our proposal, we com-
pare Q-DeLP-MAP with MAP-POP, a multi-agent planner without argumen-
tation, and PS-Q-DeLP-MAP, an argumentation framework that emulates

28

the behavior of other approaches [8, 7]9:

• MAP-POP is a general-purpose MAP framework suitable to cope with
a wide variety of MAP domains [45]. MAP-POP is a POP-based re-
finement planning approach that iteratively combines planning and
coordination. Agents do not have argumentation capabilities.

• PS-Q-DeLP-MAP is a modified version of Q-DeLP-MAP adapted to ap-
ply plan selection (PS) instead of applying defeasible reasoning during
the search process of a plan construction. In this case, the plan gen-
eration phase is executed until completion (a solution plan that solves
the problem goals is returned) and then the final plan is evaluated
in an argumentative dialogue among the agents. As in [8, 7], PS-Q-
DeLP-MAP draws upon a one-shot planning-argumentation approach
instead of continuously interleaving planning and argumentation like
in Q-DeLP-MAP. This iterative one-shot procedure is repeated until
the evaluation phase returns an undefeated solution plan.

The experiments were carried out in three well-known domains used in
the IPC (International Planning Competitions) benchmarks [22]:

• satellite: a space application that involves planning and scheduling a
collection of observation tasks between multiple satellites, each equipped
with different instruments such as infrared, spectrograph, thermo-
graph, calibration equipment, etc.

• rovers: it is a simplification of the NASA Mars Exploration Rover
problem. Multiple planetary rovers explore the environment by taking
pictures, gathering samples and communicating them back to a lander.

• logistics: it involves driving trucks and flying airplanes to deliver pack-
ages between locations. Locations are either airports, reachable by
planes and trucks, or places within a city, only reachable by trucks.

Since the IPC problem suites only include single-agent versions of the
planning problems, we used the multi-agent version of the domains presented
in [46]10. The agentization of the satellite domain features one agent per
satellite. The resulting MAP tasks are almost decoupled as each satellite can
attain a subset of the task goals (even all the goals in some cases) without

9CAMAP is not suitable for comparison because it is an ad-hoc approach specifically
designed for health-care applications

10Domains are also available at http://users.dsic.upv.es/grupos/grps/tools/map/fmap.html

29

http://users.dsic.upv.es/grupos/grps/tools/map/fmap.html

interacting with any other agent. The agentization of the rovers domain
consists in creating a planning task per rover. In this case, agents are all
of the same type (rovers) and have the same set of planning actions except
that only one rover is equipped with a camera to take pictures. The rovers
domain generates low-level agent interaction tasks since rovers are generally
capable to achieve a problem goal by themselves. The agentization of the
logistics domain includes trucks and planes, thus generating a planning task
per truck or plane agent with different planning capabilities. In this domain,
agents need to cooperate in order to transport the packages to their target
locations and tasks present several coordination points (airports) at which
trucks and planes interact. Therefore, according to the agent interaction and
complexity of the planning domains, satellite is the simplest domain (almost
decoupled tasks), rovers offers a medium level of complexity (loosely-coupled
tasks) and logistics is the most difficult domain (tightly-coupled tasks).

The planning tasks in [46] are encoded in a version of the Planning
Domain Description Language (PDDL) that introduces state variables11.
The defeasible rules12 incorporated into the agents planning tasks of the
two space applications, the satellite and rovers domains, are related to:

1. due to the existence of solar storms, one or more agents (satellites)
may believe this is a probably cause for images not to be correctly
taken; the existence of solar storms is also used by some agents in the
rovers domains to argue about communication failures between a rover
and the lander.

2. agents that have a more accurate picture of the mars surface may hold
reasons to believe that a rover will not be able to move across some
particular area at night. However, some rovers may be equipped with
a spotlight, which would allow them to move between waypoints at
night, being this information unknown to the attacking agent.

3. satellites need to calibrate their instruments to make them point at
the precise direction where the image must be taken from. We de-
fined defeasible rules that argue about the precision of the calibration
models.

11http://ipc.informatik.uni-freiburg.de/PddlExtension
12Defeasible rules are encoded in the form of operators, like planning operators, through

the special constructor :def-rule of our language (see [29]). Internally, our planner works
with ground instances of operators like most planners do. Ground instances of :def-rule
are generated using the set of literals derived from the grounding of the planning operators
plus the literals of the initial situation. Subsequently, we will use the term defeasible rule
to refer to any instance of a :def-rule operator.

30

http://ipc.informatik.uni-freiburg.de/PddlExtension

4. an agent may hold reasons to believe that the usual low temperatures
in the space will prevent a rover from moving to a specific waypoint;
but, if the rover is equipped with a electrical heater, he would be able
to refute the attack of the agent.

News like the solar storms or atmospheric conditions in the space may
be likewise considered as defeasible knowledge if we assume the agent may
have an outdated information. This frequently happens in space applications
where rovers communicate to Earth via orbital relays and the communication
from Mars to Earth has a long delay between 2.5 and 22 minutes. Thereby,
depending on the time elapsed since the news was received from Earth, it
can be managed as a fact or as a belief.

In the logistics domain, defeasible rules are concerned with the following
knowledge held by agents:

1. weather conditions: some agents may have a more precise weather
forecast or simply know that bad weather conditions may provoke
delays in takeoffs or even flight cancelations.

2. environment conditions: a relatively common situation that may alter
the elaboration of any plan is a call for a transport strike. Initially,
this is handled as a prediction; later either the strike is confirmed or
suspended. Agents can then argue about the possibility that the strike
takes place and the consequences in the transport plan.

We created two types of defeasible scenarios, simple and hard, for the
rovers and logistics domains and only a hard scenario for the satellite domain
given its lower level of difficulty. Basically, the difference between the two
scenarios relies in the number of defeasible rules that contradict each other.
The overall number of defeasible rules used in each problem can be seen
in Table 2 under the legend ’Def’. Particularly, the additional defeasible
rules of the hard problems are designed in such a way that their heads
contradict the head of some other rule of the respective simple problems.
Hard scenarios introduce a higher level of disagreement among agents but
this does not necessarily entail a higher number of defeated arguments since
more attacks to arguments imply more rebuttals but also more supports.
Defeasible rules are distributed across agents independently of the type of
the agent, thus allowing agents to make inferences about any issue of the
context. A detailed description on how to specify defeasible rules can be
found in [29].

We tested five planning tasks for each domain, each corresponding to a
particular problem of the IPC suites. Problems of the IPC are identified with
names pfile1, pfile2 and so on. The correspondence between our tasks and

31

Problems Ag Act Def Go Ag Act Def Go Ag Act Def Go Ag Act Def Go Ag Act Def Go

Satellite

Hard
1S 52 52 3 2S 188 52 5 2S 253 52 8 3S 497 52 8 3S 509 52 7

Rovers

Simple
1R 41 25 3 2R 52 25 3 2R 86 44 3 2R 144 44 7 3R 151 71 6

Rovers

Hard
1R 41 64 3 2R 52 64 3 2R 86 123 3 2R 144 123 7 3R 151 161 6

Logistics

Simple
1P 2T 56 31 4 1P 2T 80 31 6 1P 3T 133 39 7 1P 3T 156 39 8 1P 3T 174 81 9

Logistics

Hard
1P 2T 56 62 4 1P 2T 80 62 6 1P 3T 133 87 7 1P 3T 156 87 8 1P 3T 174 164 9

Problem 1 (S-pfile1, R-

pfile1 and L-pfile1)

Problem 2 (S-pfile3, R-

pfile3 and L-pfile3)

Problem 3 (S-pfile4, R-

pfile4 and L-pfile4)

Problem 4 (S-pfile5, R-

pfile5 and L-pfile5)

Problem 5 (S-pfile6, R-

pfile7 and L-pfile6)

Table 2: Configuration of the Experiments.

the IPC pfiles is shown in Table 2 alongside the caption of each problem. The
column ’Ag’ shows the number of agents (S stands for satellites, R stands for
rovers, T for trucks and P for planes). ’Act’ is the number of planning actions
and ’Go’ is the number of goals of the problem. The size of the problems
increases with respect to the number of agents, actions and defeasible rules.
Regarding the number of goals, only Problem 5 in the satellite and rovers
domains define fewer goals than Problem 4. It is worth mentioning that the
difficulty of solving a task is not only determined by the number of goals and
the problem size; for instance, transporting three packages to three different
destinations may be harder to solve than transporting five packages all to
the same destination13.

All the agents are executed on a single machine with a 2.83 GHz Intel
Core 2 Quad CPU and 8 GB RAM (only 1 GB RAM available for the Java
VM); a broker of Java Message Service14 for the agents communication is
executed in another machine also with 2.83GHz and 1GB RAM.

Sections 5.1 and 5.2 present the overall performance and quality of the
solution plans, respectively. Subsection 5.3 analyzes in detail the obtained
results per domain and section 5.4 shows the potential of using argumenta-
tion in planning and the level of agent contribution to each problem.

5.1. Performance analysis

The computation times obtained for the three domains are presented in
Figures 10, 11(a), 11(b), 12(a) and 12(b). Some noticeable conclusions can
be inferred from the figures: (a) the hardest problem in the satellite domain
takes 100 seconds, 450 seconds in the rovers domain, and 800 seconds in the
logistics domain, which confirms the difficulty of each domain as explained

13The file index is a rough indication of the problem difficulty albeit it is not always the
case that a problem with a larger index is more difficult to solve.

14MAP-POP, Q-DeLP-MAP and PS-Q-DeLP-MAP are based on Magentix2: a platform
of multi-agent systems [2].

32

0

20

40

60

80

100

120

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

T
im

e
 (
s
e
c
o

n
d

s
)

Hard Defeasible Scenario.

MAP-POP

PS-Q-DeLP-MAP

Q-DeLP-MAP

Figure 10: Average computation time of the hard scenario of the satellite domain.

0

50

100

150

200

250

300

350

400

450

500

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

T
im

e
 (

s
e

c
o

n
d

s
)

(a) Problems. Simple Defeasible Scenario.

MAP-POP

PS-Q-DeLP-MAP

Q-DeLP-MAP

0

100

200

300

400

500

600

700

800

900

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

T
im

e
 (

s
e

c
o

n
d

s
)

(b) Problems. Hard Defeasible Scenario.

MAP-POP

PS-Q-DeLP-MAP

Q-DeLP-MAP

Figure 11: Average computation time of the rovers domain: (a) simple scenario (b) hard
scenario

0

50

100

150

200

250

300

350

400

450

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

T
im

e
 (

s
e

c
o

n
d

s
)

(a) Problems. Simple Defeasible Scenario.

MAP-POP

PS-Q-DeLP-MAP

Q-DeLP-MAP

0

200

400

600

800

1000

1200

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

T
im

e
 (

s
e
c
o

n
d

s
)

(b) Problems. Hard Defeasible Scenario.

MAP-POP

PS-Q-DeLP-MAP

Q-DeLP-MAP

Figure 12: Average computation time of the logistics domain: (a) simple scenario (b) hard
scenario)

above; (b) MAP-POP is always the most efficient approach thanks to the
absence of an argumentative process; and (c) PS-Q-DeLP-MAP is always
more costly than Q-DeLP-MAP.

The parameters that determine the performance results are:

1. The size of the search space. This is directly related to the size of the

33

Hard Defeasible Scenario P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Satellite: Total number of proposed plans 1 34 71 109 33 1 63 93 322 73 4 8 15 45 9

Satellite: Total Number of Dialogues 0 0 0 0 0 35 120 240 495 163 36 88 300 675 180

Satellite: Arguments of CBR with Reuse = 0 0 0 0 0 0 23 81 179 137 83 26 57 199 445 134

Satellite: Arguments of CBR with Reuse ≥ 1 0 0 0 0 0 12 39 61 358 80 10 31 101 230 46

Rovers: Total number of proposed plans 1 54 86 450 504 1 386 423 664 606 3 9 9 18 26

Rovers: Total Number of Dialogues 0 0 0 0 0 10 341 397 2742 2632 24 90 63 360 442

Rovers: Arguments of CBR with Reuse = 0 0 0 0 0 0 10 144 158 1781 1583 20 71 55 325 412

Rovers: Arguments of CBR with Reuse ≥ 1 0 0 0 0 0 0 197 239 961 1049 4 19 8 35 32

Logistics: Total number of proposed plans 65 128 101 354 253 132 183 1366 557 1341 8 10 12 24 47

Logistics: Total Number of Dialogues 0 0 0 0 0 252 306 2562 1232 1363 144 230 396 648 1598

Logistics: Arguments of CBR with Reuse = 0 0 0 0 0 0 147 176 1355 669 819 102 192 321 387 1147

Logistics: Arguments of CBR with Reuse ≥ 1 0 0 0 0 0 105 130 1207 563 544 41 38 75 261 451

MAPOP Q-DeLP-MAP PS-Q-DeLP-MAP

Table 3: Results of the search process for the problems in the hard defeasible scenarios.

problem (see Table 2) and affects the three approaches.

2. Number of planning messages exchanged between agents. It influences
the performance of the three approaches and it is related to the size
of the problem as well as to the complexity of the domain.

3. Number of dialogues or dialectical trees. It only affects Q-DeLP-MAP
and PS-Q-DeLP-MAP since no argumentation is applied in MAP-POP.

4. Number of argumentation messages exchanged between agents. This
paraemeter highly impacts Q-DeLP-MAP because the argumentative
dialogues (plan evaluation) take place along the whole construction
of the plan; to a lesser extent, it also affects PS-Q-DeLP-MAP when
the evaluation is done at the end of the plan generation; i.e., over the
solution plan.

5. Number of times the planning process (plan generation) is executed in
PS-Q-DeLP-MAP. We used Q-DeLP-MAP as an external planner (with
the argumentation stage deactivated) in order to obtain the solution
plans for PS-Q-DeLP-MAP. The solution plan, which is composed of
action-argument steps, is then sent to the argumentative process. If
the plan turns out to be defeated, Q-DeLP-MAP is invoked again from
scratch and the CBR module filters out the already discarded solu-
tion plans. This behaviour emulates exactly the usage of an external
planner as in [8, 7].

Regarding the above parameters, the search results of Table 3 provide
an idea of the complexity of each approach in the hard scenarios of the three
domains (P1 stands for Problem1, P2 stands for Problem2 and so on):

1. The number of proposed plans in MAP-POP and Q-DeLP-MAP is the
total number of nodes (partial-order plans) generated in the search

34

tree. Whereas Q-DeLP-MAP sends every node to the argumentative
process so as to discard a potentially defeatable plan, MAP-POP only
expands the nodes that result from the application of the heuristic
search. Typically, Q-DeLP-MAP will generate more partial plans than
MAP-POP since a node expanded by MAP-POP may be labeled as ’de-
feated’ in Q-DeLP-MAP, in which case the node will be discarded and
an alternative path will be explored. On the other hand, the number
of proposed plans in PS-Q-DeLP-MAP shows the overall number of so-
lution plans or how many times Q-DeLP-MAP has been invoked as an
external planner (with the argumentative process deactivated).

2. The number of dialogues of MAP-POP is obviously 0. The difference in
the number of dialectical trees between Q-DeLP-MAP and PS-Q-DeLP-
MAP is due to their different behaviour: agents in PS-Q-DeLP-MAP
do not exchange argumentative messages during the search process,
only at the end of the plan generation.

3. The next two rows in each domain show the number of arguments that
have never been reused or have been reused at least once out of the
total number of evaluated arguments (dialogues).

Albeit the number of proposed plans, dialectical trees (and so the number
of exchanged messages) between agents is significantly higher in Q-DeLP-
MAP than in PS-Q-DeLP-MAP, PS-Q-DeLP-MAP is a more costly approach.
This is because in the argumentative process of Q-DeLP-MAP, a successor
node n’ of a node n only introduces a new action-argument with respect to
n. Thereby, if the proto-states of the plan in n’ do not change with respect
to n, the plan evaluation of n’ will reuse all the dialogues of the parent node
and only the newly added action-argument is sent for evaluation. However,
the CBR module in PS-Q-DeLP-MAP reuses argumentative cases of solution
plans, thus being necessary to generate a complete plan before discovering
whether the solution plan is defeated or undefeated. This evidences the high
computational cost of the planning machinery compared to the cost of the
argumentation. As shown in Figures 10, 11 and 12, interleaving planning
and argumentation is more beneficial because argumentation helps conduct
the planning process and reduce the planning workload even at the cost of
a higher argumentation activity.

Due to the high-level agent interaction in the logistics domain, a signifi-
cantly higher number of planning messages or plan proposals appear in this
domain compared to the other two domains. Additionally, the difficulty of
solving the particular goal combination of each problem is a determinant
factor in the number of proposed plans, reason why it is not always the case

35

Quality Metrics of the

Solution Plan P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Satellite: Action Steps 9 11 20 15 20 8 10 18 14 18

Satellite: Duration 8 9 13 8 11 7 8 11 7 10

Rovers: Action Steps 10 12 8 24 18 8 10 7 20 17

Rovers: Duration 7 8 5 10 7 6 7 4 9 7

Logistics: Action Steps 20 25 37 31 36 18 23 33 27 34

Logistics: Duration 9 9 13 11 13 8 9 13 11 13

MAPOP Q-DeLP-MAP / PS-Q-DeLP-MAP

Table 4: Quality of the solution plans for the hard defeasible scenarios.

that the highest number of proposed plans occur in the largest problem in-
stances. We can also observe that the correspondence between the number
of proposed plans and number of dialogues differ across domains as well as
in the problems of one same domain. All these aspects will be analyzed in
section 5.3.

5.2. Quality of the solution plans

Table 4 shows the number of actions and the duration of the plans of
the hard defeasible scenarios. Duration is measured as the number of time
or execution steps of the plan. On the other hand, we count the number
of actions of the plan that represent executable actions in the real world,
where each action corresponds to an action-argument step in Q-DeLP-MAP
and PS-Q-DeLP-MAP.

The first observation is that Q-DeLP-MAP and PS-Q-DeLP-MAP return
the same plans because they use the same planning model and build dia-
logues similarly. The only difference is the (partial or complete) plan over
which the argumentation is applied, which in turn yields different search
spaces.

We can also observe in Table 4 that the number of actions in Q-DeLP-
MAP and PS-Q-DeLP-MAP is always lower than in MAP-POP. The reason
is that an open goal of an action-argument can be supported in PS-Q-DeLP-
MAP and Q-DeLP-MAP with a supporting argument instead of an action-
argument; that is, the agents’ beliefs that succeed the argumentative process
can be used as a support of the conditions of the planning actions. For
instance, let’s assume a rover situated in waypoint w1 that plans to move
to a waypoint w2 in order to collect a soil sample. If another agent believes
that a soil sample can also be found at w1 and no other agent contradicts
this information, then the agent will not need to move to w2, thus saving
one planning action. In this case, the plan will contain fewer actions because
agents’ beliefs are also used to support the fulfilment of an open goal.

On the other hand, the duration of the plans in Q-DeLP-MAP and PS-
Q-DeLP-MAP is slightly shorter than in MAP-POP because, generally, the

36

fewer actions are in a plan, the fewer time steps it will comprise.

5.3. Discussion of the results per domain

Now, we jointly examine the results per domain obtained in sections 5.1
and 5.2.

Results of the satellite domain . Clearly, the satellite is the simplest
domain. Figure 10 shows that the computation time of problem P5 is sig-
nificantly lower than the time of problem P4. This is explained because P4
is a relatively hard instance that comprises one more goal and compels two
satellites to end up pointing at specific locations. Surprisingly, the number
of actions of MAP-POP for P4 is 15 compared to the 20 actions of P3 and P5,
an indication that determining the proper order of the operations of the two
satellites is time-consuming. We can also see that in this domain, unlike the
rovers and logistics domains, the number of dialogues of PS-Q-DeLP-MAP
almost equals or exceeds the number of dialogues in Q-DeLP-MAP. This is
due to the relatively high number of plan proposals in the satellite domain.
The proposed plans are basically a combination of a plan per satellite given
that the tasks are almost independent to each other. When the plan of one
satellite becomes defeated, the system needs to find a new combination of a
plan per agent until a successful joint global plan is obtained.

Results of the rovers domain . Figures 11(a) and 11(b) show that the
computation time of Problem2 and Problem3 is almost identical for the three
approaches, particularly in the hard defeasible scenario. The reason is that
the size of Problem2 and Problem3 is very similar, same number of agents
and goals (see Table 2), as it also reveals the similar number of proposed
plans of the three approaches for these two problems. We can also observe
that the increase in the computation time of Problem4 and Problem5, due
to the increase in the number of goals of Problem4 (7 goals) with respect to
Problem3 (3 goals), is also translated into a significantly higher number of
proposed plans and dialogues in all the approaches.

Results of the logistics domain . Figures 12(a) and 12(b) show an
almost linear increase in the computation time of the five problems. This
is partly explained because, unlike the other two domains, the size of the
logistics problems increase gradually (see Table 2) and so it does the size
of the search space. However, the differences between the simple and hard
scenarios are more pronounced in this domain and this impacts particularly
negatively on PS-Q-DeLP-MAP. In logistics, agents (trucks and planes) need
each other to accomplish the goal so typically a plan will contain at least a
truck and a plane. The more agents involved in the plan, the more attacks

37

a plan will receive since defeasible rules are uniformly distributed across
agents.

Interestingly, the figures for problem P3 in Q-DeLP-MAP (see Table 3)
are noticeably higher than for problems P4 and P5 although the two latter
contain one and two more goals, respectively. We must take into account
that the goals defined in each problem are different as the destinations of the
the seven, eight and nine packages to deliver in each problem, respectively,
are not the same. This makes some planning configurations be harder to
solve than others despite the number of goals. The high number of proposed
plans in P3 stems from the fact that P3 is intrinsically a more complex
problem than P4 and P5. This is also partly supported by the results shown
in Table 4, where the number of actions of MAP-POP for P3 is 37 compared
to the 31 actions for problem P4. Actually, P4 is a much simpler problem
than P3 from the planning standpoint.

Regarding the comparison between P3 and P5, we can observe in Table
4 that MAP-POP returns a 37-action plan for P3 and a 36-action plan for
P5, a consistently result with the number of proposed plans in Q-DeLP-
MAP for P3 and P5 as shown in Table 3. This indicates that the difficulty
of the planning process in both problems is similar. However, the number
of total dialogues in P3 is noticeably higher than in P5. The reason is
found in the number and type of different locations which the packages
must be delivered to in the goals of each problem. Although P5 comprises
the same seven packages defined in P3, destinations for these packages are
not the same in both problems. Particularly, P5 defines nine packages to
be delivered to four different locations (two post offices and two airports)
while P3 defines seven packages to be delivered to five different locations,
including three airports. Given that defeasible rules on weather conditions
and potential strikes affect mainly airports, this has a stronger impact in P3,
thus yielding a higher number of dialogues in Q-DeLP-MAP. In contrast, in
P4 and P5, which both specify only two airports as package destinations,
the number of dialogues is similar.

It is also noticeable that in P5 the number of dialogues of PS-Q-DeLP-
MAP is higher than in Q-DeLP-MAP, as it occurs in the satellite domain. The
justification follows the same line of explanation. The number of dialogues
in PS-Q-DeLP-MAP is mainly determined by the number of proposed plans,
which typically increases with the size of the problem in the number of
goals, and is less sensitive to the typology of the goal combination. In this
particular case, the number of exchanged messages during the argumentative
process of Q-DeLP-MAP is below the number of messages needed to evaluate
the 47 proposed plans in PS-Q-DeLP-MAP.

38

In summary, we can conclude that the performance of Q-DeLP-MAP pays
off the utilization of the argumentation in solving multi-agent cooperative
planning problems with respect to the other two MAP approaches.

5.4. Plan feasibility and agent contribution

Given a particular context, we say that a solution plan is feasible if it does
not contain actions that would be otherwise discarded in an argumentation
process. Feasibility is thus seen as a rough measure to know if a plan of
MAP-POP contains actions that were labeled as failing actions in Q-DeLP-
MAP and PS-Q-DeLP-MAP as a consequence of a defeated argument-action
step. Thereby, feasibility is only applied to the plans returned by MAP-
POP such that the higher the number of failing actions in its plans, the less
robustness and guarantee of a successful execution.

Feasibility is computed as the number of actions in the plans of MAP-
POP that correspond to defeated action-arguments in Q-DeLP-MAP. That
is, the actions of MAP-POP that were discarded in Q-DeLP-MAP because
the agents’ knowledge pointed at non-anticipated conditions that would af-
fect the execution of such actions. Table 5 shows the percentage of non-
executable actions in the plans of MAP-POP for each problem in the hard
defeasible scenarios of the two more complex domains, rovers and logistics.
We can observe that the percentage of failing actions is significantly higher
in the rovers domain. The reason is that the ratio of defeasible rules per
agent is much larger in this domain and thereby more attacking arguments
occur during the plan construction.

P1 P2 P3 P4 P5

rovers 30% 25% 33% 50% 41%

logistics 15% 23% 16% 16% 22%

Table 5: Percentage of failing actions in MAP-POP in the rovers and logistics domain

Finally, we were also interested in checking the contribution level of
the agents in the solution plans of Q-DeLP-MAP for the hard scenarios of
rovers and logistics. This is calculated as the number of action-arguments or
supporting arguments contributed by each agent to the plans. Table 6 (top)
shows the contribution of the three agents (Rover 0, Rover 1 and Rover
2) to the solution plan in each problem of the rovers domain. In problem
P2, one of the two rovers specified in this problem does not participate
in the plan (value 0.0%). In problem P5, the three rovers collaboratively
participate in the construction of the solution plan. In the logistics domain

39

(Table 6 (bottom)), we can observe that every agent defined in each of the
problems contributes to the solution plan. It is also noticeable that, in
general, the more trucks involved in the problem, the lower their level of
participation since the workload can be more uniformly distributed among
the total number of agents.

P1 P2 P3 P4 P5

Rover 0 100.0% 100.0% 25.0% 29.2% 16.7%

Rover 1 0.0% 75.0% 70.8% 44.4%

Rover 2 38.9%

Truck 1 25.0% 28.0% 13.5% 32.3% 44.4%

Truck 2 50.0% 32.0% 24.3% 16.1% 8.3%

Truck 3 18.9% 16.1% 16.6%

Airplane 1 25.0% 40.0% 43.2% 35.5% 30.5%

Table 6: Percentage of agent contribution to the solution plans in the rovers domain (top)
and logistics domain (bottom)

6. Conclusions and Future Work

Q-DeLP-MAP is a domain-independent argumentation-based MAP sys-
tem that contributes with: (i) the extension of the DeLP-POP framework to
a multi-agent setting; (ii) a novel specification of the qualification problem
by means of the relationships between the argument steps and the action
steps of a plan; (iii) the formalization of all the technical components of
Q-DeLP-MAP; and (iv) an exhaustive experimental evaluation in three do-
mains from the IPC and comparison with two other MAP approaches.

We conclude that using argumentation is a promising line to tackle plan-
ning problems while incorporating the agents beliefs within the reasoning
process. This allows us to consider unexpected environmental conditions
which cannot be modeled within the planning representation. Additionally,
the extension of the model to a multi-agent system opens up many possi-
bilities of application in real-world problems where knowledge, abilities and
beliefs are distributed across several reasoning entities.

For future work, we envision several promising research directions:

(1) We are currently studying a new heuristic function that takes into
account not only plan data, but also the information learned from
the argumentative process. Our hypothesis is that an argumentation-
based heuristic function will enable predicting the potential number
of attacks of a refinement plan.

40

(2) In Q-DeLP-MAP, agents accept the result of the argumentation pro-
cess and take it for granted. However, a wiser reasoning would consider
how trustworthy the agent that puts forward the attacking/defending
argument is. To this regard, we intend to design an argumentation
based trust model that allows the agent to make a wiser decision in
case of conflicting arguments related to a specific action, similarly to
the proposal in [6] to Recommender Systems. Particularly, we will
explore a model that assigns facts with a trust level according to the
reliability of the agents’ information source in order to estimate the
trustworthiness of an attacking argument. This way, only attacks with
a higher trust level would eliminate past evidences and a trust-based
preference criterion will be used for selection among conflicting attack-
ing arguments.

(3) Extending Q-DeLP-MAP to temporal planning is also a challenging
objective that would involve adapting the argumentation model to
temporal beliefs that change over time [27].

References

[1] A. Aamodt and E. Plaza. Case-based reasoning; foundational issues,
methodological variations, and system approaches. AI Communica-
tions, 7(1):39–59, 1994.

[2] J. M. Alberola, J. M. Such, V. Botti, A. Espinosa, and A. Garćıa-
Fornes. A scalable multiagent platform for large systems. Computer
Science and Information Systems, 10(1):51–77, 2013.

[3] L. Amgoud and S. Kaci. An argumentation framework for merging con-
flicting knowledge bases. International Journal of Approximate Reason-
ing, 45(2):321–340, 2007.

[4] K. Atkinson and T. J. M. Bench-Capon. Legal case-based reasoning as
practical reasoning. Artificial Intelligence and Law, 13(1):93–131, 2005.

[5] K. Atkinson and T. J. M. Bench-Capon. Practical reasoning as pre-
sumptive argumentation using action based alternating transition sys-
tems. Artificial Intelligence, 171(10-15):855–874, 2007.

[6] P. Bedi and P. B. Vashisth. Empowering recommender systems using
trust and argumentation. Information Sciences, 279:569–586, 2014.

41

[7] A. Belesiotis. Argumentation-Based Methods for Multi-Perspective Co-
operative Planning. PhD thesis, University of Edinburgh, United King-
dom, 2012.

[8] A. Belesiotis, M. Rovatsos, and I. Rahwan. Agreeing on Plans Through
Iterated Disputes. In Proc. of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), volume 1,
pages 765–772, 2010.

[9] T. J. M. Bench-Capon, K. Atkinson, and P. McBurney. Using argu-
mentation to model agent decision making in economic experiments.
Autonomous Agents and Multi-Agent Systems, 25(1):183–208, 2012.

[10] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial
intelligence. Artificial Intelligence, 171(10-15):619–641, 2007.

[11] D. Bryce and S. Kambhampati. A tutorial on planning graph based
reachability heuristics. AI Magazine, 28(1):47–83, 2007.

[12] D. Cartwright and K. Atkinson. Using computational argumentation to
support e-participation. IEEE Intelligent Systems, 24(5):42–52, 2009.

[13] P. Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–357, 1995.

[14] G. Ferguson and J. F. Allen. Arguing about plans: Plan representation
and reasoning for mixed-initiative planning. In Proc. of the Second
International Conference on Artificial Intelligence Planning Systems
(AIPS’94), pages 43–48, 1994.

[15] A. Garćıa and G. Simari. Defeasible Logic Programming: An Argumen-
tative Approach. Theory and Practice of Logic Programming, 4(2):95–
138, 2004.

[16] D. Garćıa. Planificación y Formalización de Acciones para Agentes
Inteligentes. PhD thesis, University of Nacional del Sur, Bah́ıa Blanca,
Argentina (in Spanish), 2011.

[17] D. Garćıa, A. Garćıa, and G. Simari. Defeasible Reasoning and Par-
tial Order Planning. In Proc. of the 5th international conference on
Foundations of information and knowledge systems (FoIKS’08), pages
311–328, 2008.

42

https://www.era.lib.ed.ac.uk/bitstream/handle/1842/7535/Belesiotis2012.pdf;jsessionid=10B9951221948FD4EF8DAD4B2E066AC8?sequence=2
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/7535/Belesiotis2012.pdf;jsessionid=10B9951221948FD4EF8DAD4B2E066AC8?sequence=2
http://homepages.inf.ed.ac.uk/s0570642/papers/belesiotisetal-aamas2010.pdf
http://homepages.inf.ed.ac.uk/s0570642/papers/belesiotisetal-aamas2010.pdf
http://cs.uns.edu.ar/~ajg/papers/2004TPLPGarciaSimari.pdf
http://cs.uns.edu.ar/~ajg/papers/2004TPLPGarciaSimari.pdf
http://cs.uns.edu.ar/~grs/Publications/2008-GarciaGarciaSimari-FoIKS.pdf
http://cs.uns.edu.ar/~grs/Publications/2008-GarciaGarciaSimari-FoIKS.pdf

[18] M. L. Ginsberg and D. E. Smith. Reasoning about action II: the qual-
ification problem. Artificial Intelligence, 35(3):311–342, 1988.

[19] R. Girle, D. L. Hitchcock, P. McBurney, and B. Verheij. Decision sup-
port for practical reasoning: A theoretical and computational perspec-
tive. In eds. C. Reed and T. Norman, editors, Argumentation Machines.
New Frontiers in Argument and Computation, pages 55–84. Kluwer
Academic Publishers, 2003.

[20] J. Hulstijn and L. van der Torre. Combining goal generation and plan-
ning in an argumentation framework. In Proc. of the 10th International
Workshop on Non-Monotonic Reasoning (NMR 2004), pages 212–218,
2004.

[21] E. Kok, J. Meyer, H. Prakken, and G. Vreeswijk. Testing the benfits
of structured argumentation in multi-agent deliberation dialogues. In
Proc. of the 11th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2012), volume 3, pages 1411–1412,
2012.

[22] D. Long and M. Fox. The 3rd international planning competition:
Results and analysis. Journal of Artificial Intelligence Research, 20:1–
59, 2003.

[23] J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In M.L. Ginsberg, ed., Readings in
nonmonotonic reasoning, pages 26–45. Morgan Kaufmann Publishers,
1987.

[24] R. Medellin-Gasque, K. Atkinson, T. J. M. Bench-Capon, and
P. McBurney. Strategies for question selection in argumentative di-
alogues about plans. Argument & Computation, 4(2):151–179, 2013.

[25] A. Monteserin and A. Amandi. Argumentation-based negotiation plan-
ning for autonomous agents. Decision Support Systems, 51(3):532–548,
2011.

[26] X. Nguyen and S. Kambhampati. Reviving partial order planning. In
Proc of the 17th international joint conference on Artificial intelligence
(IJCAI 2001), volume 1, pages 459–464, 2001.

[27] S. Pajares and E. Onaindia. Temporal Defeasible Argumentation in
Multi-Agent Planning. In Proc. of the 22nd International Joint Con-
ferences on Artificial Intelligence (IJCAI 2011), pages 2834–2835, 2011.

43

http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=139
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=139

[28] S. Pajares and E. Onaindia. Defeasible Argumentation for Multi-Agent
Planning in Ambient Intelligence Applications. In Proc. of the 11th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2012), volume 1, pages 509–516, 2012.

[29] S. Pajares Ferrando and E. Onaindia. Context-Aware Multi-Agent
Planning in intelligent environments. Information Sciences, 227:22–42,
2013.

[30] S. Pajares Ferrando, E. Onaindia, and A. Torreño. An Architecture
for Defeasible-Reasoning-Based Cooperative Distributed Planning. In
Proc. of the 19th International Conference on Cooperative Information
Systems (CoopIS 2011), volume 7044 of Lecture Notes in Computer
Science, pages 200–217, 2011.

[31] P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde. Multia-
gent Argumentation for Cooperative Planning in DeLP-POP. In Proc.
of the 10th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011), volume 3, pages 971–978, 2011.

[32] J. Penberthy and D. Weld. UCPOP: A sound, complete, partial or-
der planner for ADL. In Proc. of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR’92), pages
103–114, 1992.

[33] J. Pollock. Defeasible reasoning with variable degrees of justification.
Artificial Intelligence, 133(1):233–282, 2001.

[34] J. L. Pollock. How to reason defeasibly. Artificial Intelligence, 57(1):1–
42, 1992.

[35] J. L. Pollock. Defeasible planning. In Proc. of the AAAI Workshop,
Integrating Planning, Scheduling and Execution in Dynamic and Un-
certain Environments, Technical Report WS-98-02, pages 1–6. AAAI
Press, 1998.

[36] J. L. Pollock. Rational cognition in OSCAR. In Intelligent Agents
VI, Agent Theories, Architectures, volume 1757 of Lecture Notes in
Computer Science, pages 71–90, 1999.

[37] I. Rahwan and L. Amgoud. An argumentation based approach for
practical reasoning. In Proc. of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), pages
347–354, 2006.

44

http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=156
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=156
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=165
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=165
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=146
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=146
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=132
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=132

[38] O. Sapena, A. Torreño, and E. Onaindia. On the construction of joint
plans through argumentation schemes. In Proc. of the 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), volume 3, pages 1195–1196, 2011.

[39] G. Simari and R. Loui. A mathematical treatment of defeasible rea-
soning and its implementation. Artificial Intelligence, 53(2-3):125–157,
1992.

[40] G. R. Simari, A. J. Garćıa, and M. Capobianco. Actions, planning and
defeasible reasoning. In Proc. of the 10th International Workshop on
Non-Monotonic Reasoning (NMR 2004), pages 377–384, 2004.

[41] D. E. Smith and M. A. Peot. Postponing threats in partial-order plan-
ning. In Proceedings of the 11th National Conference on Artificial In-
telligence (AAAI 93), pages 500–506, 1993.

[42] M. Thielscher. The qualification problem: A solution to the problem
of anomalous models. Artificial Intelligence, 131(1-2):1–37, 2001.

[43] A. Toniolo, T. Norman, and K. Sycara. Argumentation schemes for
collaborative planning. In Proc. of the 14th International Conference
on Agents in Principle, Agents in Practice (PRIMA 2011), volume 7047
of Lecture Notes in Computer Science, pages 323–335, 2011.

[44] A. Toniolo, T. Norman, and K. Sycara. On the benefits of argumenta-
tion schemes in deliberative dialogue. In Proc. of the 11th International
Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), volume 3, pages 1409–1410, 2012.

[45] A. Torreño, E. Onaindia, and O. Sapena. An approach to MultiAgent
Planning with Incomplete Information. In Proc. of the 20th European
Conference on Artificiak Intelligence, Frontiers in Artificial Intelligence
and Applications (ECAI 2012), volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 762–767. IOS Press, 2012.

[46] A. Torreño, E. Onaindia, and O. Sapena. FMAP: Distributed cooper-
ative multi-agent planning. Applied Intelligence, 41(2):606–626, 2014.

[47] D. Walton. Argumentation Schemes for Presumptive Reasoning.
Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

[48] D. S. Weld. An introduction to least commitment planning. AI Maga-
zine, 15(4):27–61, 1994.

45

http://www.ifaamas.org/Proceedings/aamas2012/papers/Z7_4.pdf
http://www.ifaamas.org/Proceedings/aamas2012/papers/Z7_4.pdf
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=157
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=157
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=167
http://users.dsic.upv.es/grupos/grps/downloadPaper.php?paperId=167

	Introduction
	Objectives and Problem Description
	Contributions of Q-DeLP-MAP

	Preliminary notions
	DeLP: a framework for defeasible argumentation
	POP: Partial Order Planning
	DeLP-POP: A first extension of POP with DeLP

	Components of Q-DeLP-POP
	Action-Argument Steps
	Conflicting situations
	Threats
	Attacks

	Activation of Attacking Arguments

	Cooperative Planning Protocol
	Multi-Agent Planning Task
	Multi-Agent Search Protocol
	Plan generation
	Plan evaluation
	Plan and Goal Selection

	Experimental evaluation
	Performance analysis
	Quality of the solution plans
	Discussion of the results per domain
	Plan feasibility and agent contribution

	Conclusions and Future Work

