
Book Title
Book Editors
IOS Press, 2003

1

An anytime approach for on-line planning

Abstract. In this paper we present a novel planning approach, based on well-known
techniques such as goal decomposition and heuristic planning, aimed at working in
highly dynamic environments with time constraints. Our contribution is a domain-
independent planner to incrementally generate plans under a deliberative frame-
work for reactive domains. The planner follows the anytime principles, i.e a first
solution plan can be quickly computed and the quality of the solution is improved
as time is available. Moreover, the fast computation of the sequential actions allows
the plan to start its execution before it is totally generated, thus giving rise to a
highly reactive planning system.

Keywords. On-line planning, Anytime algorithms

1. Introduction

A planner aimed to generate behavior for an agent in complex and dynamic environ-
ments, such as computer games or autonomous robots problems, often has to react within
a limited period of time. Moreover, the worlds are highly dynamic and unpredictable.
In these type of applications, the goal is not to produce optimal plans, but to obtain a
response that complies with the environment demands.

There are several planning approaches to deal with dynamic domains. Contingent
planning [11], for example, generate plans where some branches are conditionally exe-
cuted depending on the information obtained during the execution. Another approach is
conformant planning [4], which allows to deal with uncertainty on the initial conditions
and the action effects without monitoring the plan execution. However, these approaches
cannot take into account all possible contingencies and the computation time is often
prohibitive. In order to avoid the computational effort of considering all possible unex-
pected situations during planning time, the on-line planning approaches tackle these sit-
uations only when they appear. However, when precomputed behaviors are not available
the planner has to react quickly to unexpected events. One of the common techniques
to overcome this problem is to follow the anytime paradigm. Anytime algorithms give
intelligent systems the capability to trade deliberation time for quality of results [14].

There are two main issues anytime algorithms deal with: interruptibility and qual-
ity. Interruptibility implies that the algorithm must be able to be interrupted at any time
and provide some answer. The issue of quality implies that the solution is monotoni-
cally improved with respect to time. TheCASPERplanner [9], for example, starts with
an empty plan and, at each iteration, tries to solve conflicts and achieve new goals. The
work discussed in [5] addresses the issue of integrating information about uncertainty
into the planning process and also deals with time constraints. Unfortunately, these sys-
tems lack the ability to provide a first valid solution within an amount of time. The same



2 An anytime approach for on-line planning

problem occurs in thePbRalgorithm [1], which assumes there is a polynomial algorithm
to compute a valid initial plan for a particular problem. Other approaches, like the hi-
erarchical planner proposed in [3], allows to limit the time for a first solution by means
of a domain-dependent rule-based system.A-UCMP [7] is another hierarchical anytime
planner that requires a library of reactive actions to execute plans containing abstract ac-
tions. To sum up, in general either real-time planners use domain-dependent information
to have precompiled plans for quick reactions or they cannot provide an initial solution
within a time interval.

2. Objectives

The goal of this paper is to present a domain-independent planner able to provide valid
actions to an execution agent in environments with time constraints. Our proposal is a
deliberative approach, unlike most of the current reactive planners that require a precom-
puted behaviour, usually implemented as a set of rules, to select an action according to
the current world state [12]. This behavior is domain-dependent and takes a lot of time
to be computed (or it is manually introduced into the planner).

Our approach is a novel combination of classical planning techniques such as goal
decomposition and heuristic planning. This approach shows to be highly competitive
when compared to other state-of-the-art planners, in terms of solution quality and time
computation. Moreover, our approach follows the principles of the anytime algorithms:

• Interruptibility: time given to infer a single action is limited. Actually, the planner
can compute a valid action (according to its current beliefs) in a few milliseconds.
Consequently, if necessary, the plan execution can start almost immediately after
the planning process has started. This way, we can get rapid reactions when an
unexpected event occurs.

• Following the anytime computation, our planner attempts to find a better solution
while time is available. This is currently done by artificially limiting the amount
of time used to find a solution: the limit is initially set to a few milliseconds and
it is successively increased to allow better solutions.

The contribution of this paper is to present and evaluate a novel fast deliberative
planner, competitive with other well-known classical planners, and adaptable to reactive
and dynamic domains: there is no need of pre-compiled plans, a first solution plan can
be computed fast and the solution is incrementally improved according to available time.

3. The planning system

Our planning system is designed to react rapidly to unexpected events. The speed up of
this process is achieved by focusing on the most immediate actions to execute rather than
searching for a complete plan. An additional reason for this behavior is that plans often
become invalid due to frequent changes in the reactive environments.

The working scheme of the planner is quite simple. Given a state and a deadline,
the planner searches for an action, executable in that state, which can successfully lead
to a goal state. This process is repeated, starting from the resulting state after executing



An anytime approach for on-line planning 3

the last computed action, until a goal state is reached. This scheme is very flexible as it
can be used in many different ways. The planning process, for example, can be carried
out concurrently (or in an interleaved way) with the execution. This scheme offers many
advantages like, for example, that the planner can take into account information which is
only available during execution. However, to work concurrently with the execution, the
planner must make assumptions about the outcomes of action executions. Following the
assumption-based planningapproach [10], we have considered all actions as determin-
istic, replanning when an executed action has an unexpected outcome.

Our planner can also be used as an anytime planner, progressively improving a first
initial solution while time is available. To obtain this behavior we gradually increase
the maximum available time to compute the actions. Both utilization schemes will be
discussed in the results section.

4. The planning algorithm

The planning algorithm is based on a greedy action selection technique: the algorithm
computes an individual plan for each top-level goal separately, and these plans are then
ordered through a conflict checking process in order to select the next action to execute.
A planning problemP = (O, I,G) is a triple whereO is the set of operators,I the initial
state andG the top-level goals. The algorithm starts from the current stateS0, which
initially corresponds toI, and works in four stages:

The relaxed planning graph (RPG). The RPG is a graph based on aGraphPlan-like
expansion [2] where delete effects are ignored. These type of graphs are commonly used
in heuristic planners, likeFF [8] or LPG [6], since they allow to compute good relaxed
plans very fast. OurRPGincludes some additional features such as metric optimization
and support for sensing actions [13].

Calculation of the initial plans. In this stage, an incomplete plan is regressively com-
puted for each non-achieved goalgi/gi ∈ G ∧ gi 6∈ S0. Therefore,P is decomposed
in n planning subproblemsP1 = (O, S0, g1), P2 = (O, S0, g2), . . ., Pn = (O, S0, gn),
wheren is the number of non-achieved goals.

The process for building an initial planPi starts from an empty plan and set of sub-
goalsSG which initially only contains the top-level goalgi. In each iteration, the most
costly (according to theRPG) literal, l, is selected fromSG, since expanding first the
most costly literals usually generates more informed plans. Then, the best-evaluated ac-
tion, a, which producesl is added to the beginning ofPi. Actions are evaluated accord-
ing to their cost and the number of conflicts that they cause (literals deleted by the action
and required for the next actions in the plan). Finally, the new set of subgoalsSG will be
formed with the preconditions ofa that do not hold inS0. This process continues until
SG becomes empty.

An initial plan for a top-level goal is not necessarily executable since some of the
actions in the sequence might not be applicable in their corresponding state. This is
because the algorithm only takes into account one subgoal in each iteration. However, the
objective of initial plans is accomplished: an incomplete plan is rapidly computed, the
first action is directly executable, and it can be used as a good starting point for further
refinements.



4 An anytime approach for on-line planning

The refinement stage.OncePi for each top-level goalgi is computed, the refinement
stage begins. Plans are improved while there is available time. If a planPi is not valid,
then there is (at least) one action inPi with unsupported preconditions. In each iteration,
an unsupported precondition is selected and repaired in order to achieve a more complete
plan.

In order to repair a preconditionp of an actiona, a number of (incomplete) plans to
achievep are computed, in the same way than the initial plans. These new plans start from
the states prior to the problem (states inPi previous to actiona). Then, one of these plans
is selected in order to repairp. The selected plan is the one that produces a fewer number
of conflicts (unsupported preconditions). When two plans produce the same number of
conflicts, the one with the lowest cost (with regard to the problem metric) is selected.

Selection of the action to be executed.At this point, we have a planPi, which might not
be totally executable, for each top-level goalgi. When the executor requests the planner
one action, the refinement stage is halted. The planner will returnanext, the first action
of one or more plans (in case several plans share the same first action). In order to find
out which plan must be executed in first place, we apply some criteria to rule out plans.
Let’s supposeai0 is the first action of a planPi andaj0 is the first action of another plan
Pj :

• Inverse actions:Pi is ruled out whenai0 is an inverse of the last executed action.
• Shared action sequences:let’s consider thatPi = {ai0, ai1, . . . , ain} and

Pj = {aj0, aj1, . . . , ajm}. Pi is ruled out ifPj includes the first action of plan
Pi (ajk = ai0), and the sequence of actions{aj0, . . . , ajk, ai1, . . . , ain} is exe-
cutable. In other words, planPj can start its execution without affecting the later
execution ofPi.

• Non-flexible conflicts: let’s suppose that bothai0 andaj0 need and delete literal
l. This is a non-flexible order since it is not possible to order these actions unless
an additional action which repairsl is inserted between them. If this additional
action is only found in one of the plans (i.e.Pj), thenPj is ordered beforePi

and, therefore,Pi is ruled out. This type of situations often occur in domains with
strong interactions between goals.

• First action replacements: if aj0 can be replaced byai0 without causing con-
flicts, thenPj is ruled out.

• Flexible conflicts: let’s suppose thatai0 requires literall, and l is not deleted
throughout the rest of the planPi. If aj0 needs and also deletesl, thenPj is
rejected. This is becauseaj0 cannot be ordered beforeai0. Flexible orders are
very useful, for example, to order aload and anunloadaction in transportation
domains before moving the involved vehicle.

If the result of this filtering process is still a set of plans with different initial actions,
then some additional criteria are applied. The first actionanext of the selected plan is
sent to the executor, and the planner updates its environment model with the expected
effects ofanext.

5. Results

First, we will consider the on-line approach, where the planner provides the executor
actions within a given deadline. This behavior can be observed in Figure 1, correspond-



An anytime approach for on-line planning 5

ing to a problem in theRoversdomain and a problem in theZenoTraveldomain. These
problems can be found in theIPC-3 1. These results have been obtained using a 2Ghz.
Pentium IVcomputer with 512Mb. of memory. Although the data in these figures cor-
respond to a particular problem instance, the behavior is very similar to other instances
and domains. As it can be observed, the first actions in the plan are, in general, harder
to compute since the distance to the goals is greater. On the contrary, when computing
the last actions, the number of goals to reach may be very small since most of them have
already been achieved. Consequently, the plans for each goal are shorter and need fewer
refinement steps to be repaired.

Figure 1. Plans computed for a problem in theRovers(in the left) and a problem in theZenoTraveldomain
(on the right), progressively increasing the maximum available time to compute each action.

In the examples of Figure 1, the deadline is set to 10, 50 and 100 ms. per action. For
the case of 100 ms. deadline, the planner makes a decision before 100 ms. (except for
some of the first actions). In the other two cases, the refinement process is interrupted
during the computation of many plan actions because the deadline is exhausted and, con-
sequently, worse decisions are taken. In general, the more time available for computa-
tion, the better plans are obtained. The anytime behaviour is based on this idea, that is,
artificially increasing the available time to compute each action. In our planner, we have
used deadlines of 5, 10, 15, 20, 50, 100, 200, 500 and 1000 ms. per action. With greater
deadlines, the planner does not improve the quality of the solution since the refinement
stage usually terminates before exhausting the available time.

However, our approach presents an inconvenient at this point. The refinement stage
stops when the algorithm cannot further improve the current solution, even if it has avail-
able time. Yet, the results show that the overall plan quality is good enough when com-

1Third International Planning Competition. (http://planning.cis.strath.ac.uk/competition/)



6 An anytime approach for on-line planning

Table 1. Solutions found in 20 seconds per plan for several problems in theBlocksworlddomain. The problem
size represents the number of blocks in the problem.

Problem Our solutions (plan length/time sec.) LPGsolutions (plan length/time sec.)

10 64/0.03, 34/0.06 100/0.28, 36/0.5, 34/2.28

11 128/0.05, 32/0.12 200/0.7, 40/1.15, 38/1,9, 36/4,1, 34/5.4, 32/6,52

12 56/0.03, 42/0.12, 38/0.21 154/0.59, 48/1.03, 44/1.21, 42/2.92, 40/3.98

13 72/0.04, 48/0.12, 42/0.19 174/3.06, 52/3.44, 44/4.67, 42/10.44

14 86/0.06, 44/0.18 130/0.77, 64/2.4, 48/2.6, 46/3.4, 44/3.55, 42/5.4

15 100/0.08, 52/0.18, 48/0.31 172/6.23, 50/13.41, 46/13.57

16 188/0.2, 80/0.53, 58/0.72, 54/1.3 192/14.16, 112/16.14, 60/17.27, 58/17.83

17 236/0.25, 68/0.47, 54/0.66 352/15.63, 62/19.9

18 310/0.35, 70/0.6, 62/1.7 -

19 128/0.18, 94/0.6, 86/1.3, 68/2.6, 64/4.4 -

20 106/0.16, 78/0.5, 66/2.7 -

Table 2. Solutions found in 20 seconds per plan for several problems in theSatellitedomain (IPC-3).

Problem Our solutions (plan length/time) LPGsolutions (plan length/time sec.)

10 32/0.07, 31/0.47 32/0.09, 31/0.23, 29/4.48

11 35/0.09, 34/0.34 35/0.1, 34/0.16, 33/1.07, 31/1.7

12 43/0.15 51/0.21, 45/0.33, 43/0.5

13 58/0.29 67/0.36, 65/0.96, 59/2.11, 58/2.28, 57/2.46

14 45/0.17, 44/0.78 45/0.23, 43/0.62, 42/0.76, 41/7.23, 40/12.55

15 51/0.27, 50/1.22 74/0.34, 71/0.52, 64/0.62, 57/1.09, 51/1.31, 50/13.97

16 52/0.34, 49/1.2 54/0.33, 53/0.57, 51/1.31, 50/6.42

17 47/0.34, 46/1 55/0.43, 54/0.54, 53/0.86, 49/1.43, 47/5.32, 46/5.94

18 36/0.12 43/0.2, 41/0.32, 35/0.4, 33/9.88, 32/10.51

19 71/0.34, 65/1.3, 63/2.3 76/0.32, 73/0.54, 72/1.1, 69/1.45, 68/1.6, 64/8.6

20 89/0.5 108/0.4, 105/0.7, 102/1, 101/2, 99/3.4, 94/4, 88/16

pared to other state-of-the-art planners (see Tables 1, 2 and 3). We are currently address-
ing this problem in a future extension of this work.

We have chosenLPG v1.2[6] to test and compare the anytime behaviour of our
planner. The reason is thatLPG is able to provide an initial solution very rapidly and then
improve such a solution progressively. Tables 1, 2 and 3 show the successive solutions
that our planner andLPG have generated for theBlocksworld, Satelliteand Numeric
Depotsrespectively.Numeric Depotsis the numeric version of theDepotsdomain, where
some objects must be transported with trucks and arranged in stacks. In this domain, plan
quality is not measured in number of actions but in units of consumed fuel.

Results show that our planner is able to compute a first plan more rapidly thanLPG.
We must also take into account that, in our case, it is not necessary to wait for the com-
plete plan to be computed to start its execution. Moreover, our planner scales better than
LPG in the presented domains. This can be also seen in Figure 2, where we show a com-



An anytime approach for on-line planning 7

Table 3. Solutions found in 30 seconds per plan for several problems in theNumeric Depotsdomain (IPC-3).

Problem Our solutions (fuel-cost/time sec.) LPGsolutions (fuel-cost/time sec.)

10 66/0.1 48/0.12, 47/0.18

11 160/0.68, 140/4.4, 120/7.9 159/4, 154/7, 134/9, 133/11, 123/21, 103/28

12 227/2.68, 125/5.28 288/9.1

13 56/0.08 107/0.16, 77/0.21, 68/0.33, 57/0.87

14 89/0.33, 78/1.51 99/1.92, 80/2.19, 78/2.96, 68/3.63

15 256/2.92, 134/13.16 204/28.59

16 57/0.23 79/0.33, 78/0.66, 68/0.79, 59/0.96, 58/1.09, 57/6.4

17 46/0.3 49/0.53, 48/1.44, 38/1.6

18 409/3.11, 113/7.9, 99/12.62, 86/29.42 167/5.17, 137/8.75

19 98/0.5 218/0.9, 201/1.4, 181/1.7, 180/2, 150/2.4, 100/5.6

20 226/6.24, 213/28.99 245/26.65

parison between the time needed by our planner andLPG to compute a first solution in
theZenoTraveldomain. This domain, presented in theIPC-3, is a transportation domain,
where objects are transported via aeroplanes.

Figure 2. Time to compute a first solution for our planner andLPGplanner in theZenoTraveldomain.

As for the plan quality, the first solutions of our planner are usually better than the
ones ofLPG and, in general, our planner finds equal or better quality solutions in less
time thanLPG.

6. Conclusions and future work

In this paper we have presented an anytime deliberative planner, designed to work in
highly dynamic environments with time constraints. This planner is based on well-known
techniques, such as goal decomposition and heuristic planning, but combined in a novel
approach. Used as an on-line planner, our approach presents important advantages: our
planner can obtain a first solution plan very rapidly and scales up very well in many
domains. Also, plan execution can start after the first action has been computed, which



8 An anytime approach for on-line planning

can be done in a few milliseconds. This feature allows our planner fast reactions when
unexpected events occur.

Our planner can also be used as an anytime planner by artificially increasing the
available time to compute each action. Results show that plans obtained are quickly
computed and have good quality. However, our planner is not complete, and there is a
limit in the quality of the plans it can generate. Currently, we are interested in overcoming
this limitation by including an additional search process when there is available time.
This way, we can obtain a complete planner, able to produce better-quality plans.

References

[1] Ambite, J., and Knoblock, C.: Planning by rewriting, JAIR15 (2001), 207–261.
[2] Blum, A., Furst, M.: Fast planning through planning graph analysis, Artificial Intelligence90

(1997), 281–300.
[3] Briggs, W., Cook, D.: Anytime planning for optimal tradeoff between deliberative and reac-

tive planning, FLAIRS Conference (1999), 367–370.
[4] Bryce, D., Kambhampati, S.: Heuristic guidance measures for conformant planning, ICAPS

(2004), 365–375.
[5] Dean, T., Kaelbling, L., Kirman, J., Nicholson, A.: Planning under time constraints in sto-

chastic domains, Artificial Intelligence76 (1995), 35–74.
[6] Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal

action graphs in LPG, JAIR20 (2003), 239–290.
[7] Hawes, N.: Anytime planning for agent behaviour, PLANSIG (2003), 157–166.
[8] Hoffman, J., Nebel, B.: The FF planning system: Fast planning generation through heuristic

search, JAIR14 (2001), 253–302.
[9] Knight, R., Rabideau, G., Chien, S., Engelhardt, B., Sherwood, R.: Casper: Space exploration

through continuous planning, IEEE Intelligent Systems16 (2001), 70–75.
[10] Koenig, S., Tovey, C., Smirnov, Y.: Performance bounds for planning in unknown terrain,

Artificial Intelligence147(2003), 253–279.
[11] Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic satisfiability,

Artificial Intelligence147(2003), 119–162.
[12] Pryor, L., Collins, G.: Planning for contingencies: A decision-based approach, JAIR4 (1996),

287–339.
[13] O. Sapena, E. Onaindía.: Handling numeric criteria in relaxed planning graphs, LNAI3315

(2004), 114–123.
[14] Zilberstein, S.: Using anytime algorithms in intelligent systems, AI Magazine17 (1996), 73–

83.


