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Abstract. Many real-work smart environments make use
of IoT to be provided with context-aware services. Addition-
ally, these environments require making decisions based on
predictions about future actions. This involves the use of
goal-directed behaviour which may need reasoning about new
goals. This paper is devoted to analyze when a new goal can
be formulated. Once a plan has been computed for a given
problem, exogenous events can change the environment so
that a failure in the plan is caused or an opportunity arises.
This paper present a goal reasoning framework where context
information acquired from several external sources determines
a change that may affect the execution of the current plan.
This change may cause a failure or an opportunity. We show
how the planning system, namely TempLM, is able to predict
both failures and opportunities thanks to the analysis of the
Temporal Landmarks Graph and the Temporal Propositions
Graph built for the given problem.

1 INTRODUCTION

One key feature in the application of innovative technologies
like IoT in smart environments is the capability of providing
context-aware services. Besides real-world information, this
requires anticipatory behaviour through reasoning; that is,
making decisions based on predictions and expectations about
future actions [1]. Particularly, many real-world applications
involve unanticipated changes that may bring an alteration of
the current process or a future impact on the application or
even an opportunity to include some new functionality.

The purpose of a planning application is to achieve a goal
through the execution of a plan or course of actions. The ar-
rival of an unexpected environmental event introduces a new
piece of information that was not taken into account dur-
ing the construction of the plan and that may affect the ac-
tive plan in several ways. Typically, the first reaction is to
check if the plan is no longer executable and, if so, apply a
repair mechanism or replanning to fix the failure that pre-
vents the active plan from being normally executed. A second
consequence is that the unanticipated event provokes a future
anomaly in the plan execution. A third and more interesting
derivation is whether the new data brings an opportunity to
achieve a goal that is not currently contemplated in the active
plan.

Goal-directed behaviour is a hallmark of intelligence aimed
at discovering the changes that can be applied in the goal of
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{emarzal,jeibrui,lstarin,onaindia}@dsic.upv.es

an application in view of the information collected by some
unanticipated events. A dynamic formulation of new goals is
very helpful in situations where: a) the agent’s interests are
threaten and a rational anomaly response must be provided;
b) goals are no longer achievable and a graceful degradation in
the goal achievement is a convenient action; or c) goal achieve-
ment in the future is jeopardized, what affects future perfor-
mance [14]. Thereby, goal-directed reasoning can be regarded
as a context-aware responsiveness technique.

This paper is particularly devoted to analyze the first step
of a goal formulation process; that is, to answer the question
’when a new goal can be formulated?’. In some applications,
opportunistic behaviour is applied when the sensory input
triggers some enabling conditions to accomplish a task, and
reactive plans are adopted to detect problems and recover
from them automatically as well as to recognize and exploit
opportunities [2]. In dynamic and complex environments, like
robotics, opportunities are predicted and executed immedi-
ately in order to provide quick responsiveness but there is no
usually anticipation of future situations.

In less dynamic and reactive environments, typically, goal
formulation is considered when an anomaly is detected and/or
the system is self-motivated to explore its actions in the world
[14]. One approach that has been used to predict or anticipate
future plan failures is Case-Based Planning (CBP). In CBP,
when a plan fails, it is usually stored with the justification
of its failure. This information is then retrieved from the case
memory when looking for a similar situation which produced a
failure in the past. CBP may be applied before the generation
of a plan to anticipate possible problems and avoid situations
that failed in the past, or after a plan has been produced
to eliminate plans which may fail [13]. CBP presents though
several limitations in its application to smart environments: a)
predicting future failures is subject to finding an identical case
in the case memory; and b) CBP allows only for anticipating
a failure but not for detecting opportunities of pursuing a
better goal or a new goal.

In this paper, we present a goal reasoning framework that
traces the execution of a temporal plan and identifies if the
context information acquired from several sources determines
a change in the plan goals. Particularly, the reasoner detects
situations of future failures and opportunities in the plan ex-
ecution in the context of temporal planning with deadlines.
The framework draws upon TempLM, an approach based on
temporal landmarks to handle temporal planning problems
with deadlines [11, 12], and we will show how the reasoner
works on a temporal plan of a tourist application.
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Figure 1. Architecture

This paper is organized as follows. First, a motivating ex-
ample is introduced, as well as the architecture of our system.
Then, some basic definitions referring to automated planning
and the main characteristics of our planner TempLM are given.
Section 4 introduces new definitions about exogenous events
and section 5 explains the analysis that TempLM performs in
order to detect future failures or opportunities caused by ex-
ogenous events. Finally, section 6 concludes and outlines some
future work.

2 TOURIST APPLICATION EXAMPLE

In order to illustrate the foundations and contributions of
this paper, a problem in the context of smart tourist will
be used. Smart tourism involves several components that
are supported by information and communication technolo-
gies (ICT) [9]. On one hand, it refers to Smart Destinations,
which are cases of smart cities that apply smart city princi-
ples to support mobility, resource availability and allocation,
sustainability and quality of life/visits. Second, the Smart
resident/visitor experience focuses on technology-mediated
tourism experiences and their enhancement through person-
alization, context-awareness and real-time monitoring [4]. Fi-
nally, Smart business refers to the complex business ecosystem
that creates and supports the exchange of touristic resources
and the co-creation of the tourism experience. These smart
systems include a wide range of technologies in direct sup-
port of tourism such as decision support systems and the
more recent recommender systems, context-aware systems,
autonomous agents searching and mining Web sources, am-
bient intelligence, as well as systems that create augmented
realities.

In this sense, our system aims to improve the resi-
dent/visitor experience by reacting in advance to changes in
the environment that may cause failures or opportunities in
the previously computed agenda. The architecture of our sys-

tem, shown in Figure 1, is composed of the following modules:

• The Central module is the core of the system. It is in
charge of generating the initial plan, considering the user
profile and the context information. Additionally, it listens
to new events that may require to update this plan.

• The Recommender System selects the recommended
visits for a tourist, given her user profile and the context
information.

• The TempLM planner develops two main tasks: in first
place, it receives the goals computed by the recommender
system and the context information and it builds the initial
plan for the tourist; then, every time a new event is received
by the central module, TempLM analyses it to determine
whether the plan needs to be updated.

In this paper, we will focus on the second task of TempLM,
that is, on the analysis of events to detect failures or oppor-
tunities in the plan.

An example of the problem that we are facing is the follow-
ing. A tourist arrives to Valencia (Spain) and she is staying
at Caro Hotel. She uses our system to obtain a personalized
agenda for her visit. First, the recommender system analyses
her user profile to select a set of recommended visits with a
recommended duration. Let us assume that the user is recom-
mended to visit the Lonja for 1.5 hours, the Cathedral and the
Central Market for 2 hours, respectively. These recommended
goals, some other user preferences related to the time windows
when she prefers to perform the activities along with infor-
mation about the context, such as the opening hours of the
places to visit and the geographical distances between places,
are compiled into a planning problem that is formulated as an
Automated Planning Problem [8], with durative actions and
deadlines. This problem is solved by our planner TempLM.

Figure 2 shows the plan obtained for this tourist. The seg-
ments at the bottom represent the opening hours of places
(i.e. the Lonja is open from 10h until 19h) or the time win-
dows of preferences indicated by the user (i.e. the time for
having lunch ranges from 14h to 16h). The green boxes rep-
resent the actions in the plan. Specifically, in this domain,
three types of actions can be performed: visiting an attrac-
tion, having lunch and moving from one place to another.
The duration of these actions is determined by the corre-
sponding parameters, that is, the attraction to visit or the ori-
gin and destination of the movement action, respectively. For
example, the action (visit T Lonja) takes from 10:09h to
11:29h. In addition, the visit action must consider the opening
hours/preference time window; for example, the action (visit

T Centralmarket) can only be performed from 15:30h until
19h. The whole plan must fit into the available time of the
user indicated in Figure 2 as the timeline, that is, from 10h
until 19h. A more detailed description of the compilation of
this problem and domain can be found in [10].

If we consider this context, there are some events that may
occur during the visit of our tourist. For example:

• The Lonja may close earlier or open later, that is, its avail-
able time window may change; this may imply that the
visit action has to finish before than expected or it has to
be delayed, respectively.

• The Ricard Camarena restaurant may be fully-booked,
which implies that another restaurant in the area must be
selected.
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Figure 2. Plan in execution

• The user may take longer to walk from his hotel to the
Lonja, so the visit action must be delayed.

These exogenous events are received by the central mod-
ule from the external data sources and are analyzed by Tem-
pLM in order to react in consequence. There are some events
that may cause a plan failure (i.e. the attraction is closed)
or a plan modification (i.e. the user gets later that expected
to an attraction), whereas others may cause the appearance
of a free time slot that can be used to include an affor-
dance/opportunity. In this current work, we will focus on the
detection of both failures and time slots for opportunities,
and we will give some hints about how they can be solved or
exploited.

3 BACKGROUND

This section introduces some planning concepts and then it
summarizes the main characteristics of our planner TempLM.

3.1 Planning concepts

Definition 3.1 A temporal planning problem with
deadline constraints is a tuple P =

〈
P,O, I,G,D

〉
, where

P is the set of propositions, O is the set of ground actions, I
and G are sets of propositions that represent the initial state
and the goal description and D is a set of deadline constraints
of the form (p, t), denoting that proposition p must be achieved
within t time units.

For example, a proposition in I can be (be T Caro), in-
dicating that initially the tourist is at the Caro hotel. It is
important to note that, apart from the propositions and func-
tions that are initially true, the initial state I may also contain
timed initial literals (TILs). TILs, which were first introduced
in PDDL2.2[6], are a very simple way of expressing that a
proposition becomes true or false at a certain time point. A
TIL can be represented as a pair (p, t), where p is a (positive
or negative) proposition and t is a time point. Specifically,
if p is a positive proposition, then t indicates the time point
at which p becomes true and if it is a negative proposition,
then t indicates the time point at which p becomes false. For

example, ((not (open Lonja)),19h) is a TIL in I that indicates
that the Lonja will close at 19h.

Definition 3.2 A simple durative action a ∈ O is defined
as a tuple (pre`, eff`, pre↔, prea, effa, dur)[5]:

• pre` (prea) are the start (end) conditions of a: at the state
in which a starts (ends), these conditions must hold.

• eff` (effa) are the start (end) effects of a: starting (end-
ing) a updates the world state according to these effects. A
given collection of effects effx, x ∈ {`,a} consists of:

– eff−x , propositions to be deleted from the world state;

– eff+
x , propositions to be added to the world state

• pre↔ are the invariant conditions of a: these must hold at
every point in the open interval between the start and end
of a.

• dur is the duration of a.

An example of an action is shown here:
Action: Eat(?t: tourist, ?r: restaurant)

pre` = { (free table ?r) }, prea = ∅
pre↔ = { (open ?r), (time for eat ?t), (be ?t ?r) }
eff` = ∅, effa = { (eaten ?t) }
dur = (eat time ?t ?r)

Definition 3.3 A temporal plan Π is a set of pairs (a, t),
where a ∈ O and t is the start execution time of a.

The temporal plan for the running example is shown in
Figure 2.

Definition 3.4 Given a temporal plan Π, the induced plan
Π∗ for Π is the set of pairs defined as [7]:

Π∗ = {(a`, t), (aa, t+ dur(a))}, ∀(a, t) ∈ Π

For simplicity, we will refer to any pair in Π∗ as an ”action”.
For example, Π∗ would include ((walk T Caro Lonja)`,

10:00) and ((walk T Caro Lonja)a, 10:09). In the induced
plan, we only consider the start and the end time points of
the actions in the original temporal plan because these are the
time points interesting for building the state resulting from
the execution at a certain time point t, as shown below.
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Definition 3.5 Given a state St defined as a set of proposi-
tions that are true at time t and a pair (ax, t) ∈ Π∗, an action
ax is applicable in St if prex(a) ∪ pre↔(a) ⊆ St.

With this definition, only the start and the end time points
of the actions are considered. In order to mitigate the fact that
the overall conditions are not checked during the execution of
the action, we check them at the start and the end of the
action, although this is not consistent with the definition of a
durative action in PDDL2.1 (where the overall conditions of
an action a starting at t have to be fulfilled during the interval
[t+ ε, t+ dur(a)− ε]).

Definition 3.6 Given a time point t, let Π∗t be the subset
of actions (a, t′) ∈ Π∗ such that t′ < t. A temporal state
St is composed by a set of propositions p ∈ P and a set of
TILs (denoted by Γt) resulting from applying the actions in
Π∗t from I (denoted by I →Π∗

t
St), that is, it is assumed that

the actions in Π∗t are applicable in the corresponding state.
Formally, we define St recursively, where S0 = I:

St = St−1 −


 ⋃

∀(ax,t′)∈Π∗
t

eff−x (a)


∪


 ⋃

∀(ax,t′)∈Πt

eff+
x (a)




For example, the state S10:09 reached after the execution of
the action ((walk T Caro Lonja)a,10:09h) will be the same
as the initial state but S10:09 will contain the new location
of the tourist (be T Lonja). It is important to notice that if
we compute the state S10:05, then the location of the user is
unknown because the proposition (be T Caro) is deleted at the
start time of the execution of the action and the proposition
(be T Lonja) is not added until the end time of the action.

Definition 3.7 The duration (makespan) of an induced
plan Π∗ executed from the initial state of the problem is
dur(Π∗) = max∀(aa,t)∈Π∗

(
t
)
−Ti; i.e., the end time of the ac-

tion that finishes last minus the time point at which the plan
starts Ti, assuming that all the actions in Π∗ are applicable
in the corresponding state.

For instance, dur(Π∗) in Figure 2 is 7 h. and 9 min., because
the last action ends at 17:09h and the plan starts at 10h.

Definition 3.8 An induced plan Π∗ is a solution for a
temporal planning problem with deadline constraints
P =

〈
P,O, I,G,D

〉
if the following conditions hold:

1. G ⊆ Sg, where I →Π∗
t
Sg, where t = dur(Π∗)

2. ∀(p, t) ∈ D : ∃t′ ≤ t : p ∈ St′ , where I →Π∗
t′
St′

This definition indicates that it is not only necessary that
a plan Π∗ reaches the goals, but also that all the propositions
present in D are achieved before the corresponding deadline.

3.2 TempLM

TempLM [11] is a temporal planning approach for solving
planning problems with deadlines that has demonstrated an
excellent behaviour in the detection of unsolvable problems
and the resolution of overconstrained problems. It draws upon
the concept of temporal landmark, which is a proposition that

is found to necessarily happen in a solution plan in order to
satisfy the deadlines of the problem goals. The set of tem-
poral landmarks extracted from a problem along with their
relationships form a temporal landmarks graph (TLG) that
is conveniently used to take decisions during the construction
of the solution plan and for guiding the search process.

Definition 3.9 A Temporal Landmarks Graph (TLG)
is a directed graph G = (V,E) where the set of nodes V
are landmarks and an edge in E is a tuple of the form
(li, lj ,≺{n,d}) which represents a necessary or dependency or-
dering constraint between the landmarks li and lj, denoting
that li must happen before lj in a solution plan.

Landmarks are also annotated with various temporal inter-
vals that represent the validity of the corresponding temporal
proposition ([11]):

• The generation interval of a landmark is denoted by
[ming(l),maxg(l)]. ming(l) represents the earliest time
point when landmark l can start in the plan. maxg(l) rep-
resents the latest time point when l must start in order to
satisfy D.

• The validity interval of a landmark l is denoted by
([minv(l),maxv(l)]) and it represents the longest time that
l can be in the plan.

• The necessity interval of a landmark l is denoted by
([minn(l),maxn(l)]) and it represents the set of time points
when l is required as a condition for an action to achieve
other landmarks.

These intervals are given some initial values that are then
updated by means of a propagation method, as explained in
[11]. In order to be consistent, both the generation interval
and the necessity interval must fall into the validity interval.
Figure 3 shows a part of the initial TLG built for this prob-
lem. The validity interval of a landmark is represented by a
segment, the maxg is indicated by a small bold vertical line
(ming is always equal to minv) and the necessity interval is
represented by a green box inside the segment. For example,
the validity interval of the landmark (visited T Cathedral) is
[12:05h, 19h] and the maxg = 19h; the necessity interval for
this landmark is empty.

TempLM applies a search process in the space of partial
plans in order to find a solution plan for a problem P. A node
in the search tree is defined as n = (Π, St, TLGΠ), where Π
is the conflict-free partial plan of n, St is the state reached at
time t = dur(Π) after the execution of Π from I and TLGΠ is
the refined TLG after taking into account the information in
Π. Given a node n of the search tree, a successor of n results
from adding an executable action a to the partial plan of n,
provided that a does not cause conflicts with the actions of
n. Hence, the plan of the successor node will contain a newly
added action, information which can be exploited to find new
temporal landmarks in the TLG [12].

4 CHANGES IN THE ENVIRONMENT

This section introduces some definitions related to the man-
agement of changes in the environment. We assume that in
our system changes happen due to exogenous events.

10



Figure 3. Initial partial TLG for this problem

Definition 4.1 We define an exogenous event θ as a tuple
(ta, p, tc), where ta is the arrival time point, that is, the time
point when the exogenous event is received in the system, and
(p, tc) denotes a TIL.

For example, let ((not (open Centralmarket)),17h) be a TIL
in I that indicates that the Central Market will close at 17h.
If at 14h it is known that the Central Market will close one
hour earlier, the exogenous event that will be received by the
system is the following: (14h, (not (open Centralmarket)), 16h)
and it will invalidate the previous TIL.

Definition 4.2 We say that two exogenous events (ta, p, tc)
and (t′a, p

′, t′c) are linked2 if they refer to the same proposition
(p = p′) and their arrival time is the same (ta = t′a).

We can indicate a modification in the actual duration of
an action with two linked exogenous events that refer to the
proposition(s) that will be achieved as a result of the execu-
tion of the action. The first one deletes a proposition p at the
time it was expected and the second event adds that propo-
sition at the new time. For example, if at 13h it is known
that the action (eat T RicardCamarena) to be executed from
14h to 15:30h will take 30 minutes more than expected, these
two linked exogenous events are received by the system: (13h,
(not (eaten T)), 15:30h) and (13h, (eaten T), 16h). The first
one deletes the expected event of the tourist having finished
lunch at 15:30h and the second adds the proposition at the
time when the tourist will actually finish having lunch.

We denote by tcur the current execution time when an event
θ is received and by Sotcur

the current (observed) state. There-
fore, Sotcur

will contain the propositions that are true in the
current world and the functions with their actual value in
the current world. Moreover, let Γtcur−ε be the set of TILs
in the state at the time immediately prior to tcur. S

o
tcur

will
contain the TIL in θ plus the TILs in Γtcur−ε that are consis-
tent with θ. For example, as Figure 2 shows, Γ14h−ε contains,
among others, the TILs in Table 1 (top). If the event θ =(14h,
(not (open Centralmarket)), 17:30h) is received, then Γ14h in
Sotcur

will be updated as shown in Table 1 (bottom). That is,
the time window in which the Central Market remains open
is updated from [15:30h, 19h] to [15:30h, 17:30h].

Definition 4.3 We define the executed partial plan at
tcur, denoted by Π∗ex, as:

Π∗ex = {(a, t) ∈ Π∗ : t < tcur}
2 For simplicity, we denote by θ a single event or two linked events.

Table 1. TILs at 14h

Γ14h−ε
((open Centralmarket), 15:30h),
((not (open Centralmarket)), 19h),
((not (open Ricardcamarena)), 17h), ...
Γ14h

((open Centralmarket), 15:30h),
((not (open Centralmarket)), 17:30h),
((not (open Ricardcamarena)), 17h), ...

Definition 4.4 We define the remaining partial plan at
tcur, denoted by Π∗r , as:

Π∗r = {(a, t) ∈ Π∗ : t ≥ tcur}

Definition 4.5 We define the resulting state of Π∗ex
(Stcur ) as the state reached after executing the actions in Π∗ex,
that is: I →Π∗ex Stcur

Definition 4.6 We define the difference between two states
Si and Sj as:

Diff(Si, Sj) = (Si − Sj) ∪ (Sj − Si)

Definition 4.7 A discrepancy is a non-empty difference
between the state that should have been reached with the ex-
ecuted part of the plan Stcur and the current observed state
Sotcur

, that is: Diff(Stcur , S
o
tcur

) 6= ∅.

Obviously, the discrepancy between these two sets will at
least contain the TIL from the event θ. For example, if we
consider the example in Table 1, the event that arrives at
14h is reflected in the resulting Γ. Discrepancies may cause
failures or opportunities in the plan.

Definition 4.8 We say that there is a failure in the plan
if:

1. There is a discrepancy at tcur, and
2. Sotcur

→Π∗r Sg : G 6⊆ Sg, that is, the plan does not reach the
goal due to this discrepancy.

Note that Π∗ was a solution for the initial planning prob-
lem, that is, it was executable from I. This definition indicates
that there has been a change in the environment at a certain
time point between I and tcur which causes a failure in the
execution of action a and, consequently, a failure in the exe-
cution of the plan.

11



Definition 4.9 We say that there is an opportunity in the
plan if:

1. There is a discrepancy at tcur, and
2. Sotcur

→Π∗r Sg : G ⊆ Sg, that is, the plan reaches the goal
in spite of this discrepancy, and

3. this discrepancy causes a different execution of the remain-
ing plan, that is, there is a time point t where the state
reached from Stcur is different from the state reached from
Sotcur

; formally, given t ∈ [tcur, dur(Π
∗)], let Π′ be the set

of actions in Π∗r scheduled to start between tcur and t; we
define Sot and St as Sotcur

→Π′ S
o
t and Stcur →Π′ St, re-

spectively; the execution of the remaining plan is different
if Diff(St, S

o
t ) 6= Diff(Stcur , S

o
tcur

).

An opportunity in this case is defined as a discrepancy that
still allows to reach the goals but that causes a difference in
the execution of the original plan.

It could be the case that a discrepancy does not cause a
failure or an opportunity, because it affects an object that is
not considered in the current plan.

5 DETECTION OF FAILURES AND
OPPORTUNITIES IN TempLM

The TLG that TempLM builds to solve a planning problem
gives an schema of which propositions must be achieved in the
plan, and when they must be achieved in order to reach the
goals on time. Additionally, a Temporal Proposition Graph,
which gives an exact picture of the propositions that are
achieved in the plan and when they are achieved, is defined:

Definition 5.1 A Temporal Proposition Graph (TPG)
for a given induced plan Π∗ is a representation of the time
interval in which a proposition p ∈ P is true during the ex-
ecution of Π∗. This is denoted as the validity interval of the
proposition p. A TPG also defines the generation and neces-
sity intervals of a proposition, with the same meaning as for
a landmark in the TLG.

Figure 4 shows the TPG for the plan in Figure 2. In this
case, all the propositions that appear during the execution of
the plan are represented. It can be observed that the validity
interval of the propositions in the TPG is much smaller than
in the TLG (see Figure 3), given that the TLG is just an
estimation, whereas the TPG is an accurate representation of
the solution plan. For example, in Figure 3, proposition (be
T Cathedral) ranges from 10:05h until 19h, whereas in Figure
4 it is shrunk to the interval [11:34h, 13:34h].

The aim of this section is to explain how both the TLG
and the TPG can be used in order to detect failures and
opportunities due to exogenous events that may arrive during
the execution of a plan, and also to give some hints about how
they can be solved or exploited.

As explained in section 2, when a new exogenous event is
detected by the central module, TempLM receives the cur-
rent execution time tcur, the current observed state Sotcur

and
the exogenous event θ as input. Then, TempLM computes the
state that should have been reached as a result of the exe-
cution of the plan until time tcur, that is, it computes Stcur .
The next step is to analyze whether the event θ has caused a

Figure 5. Example of future failure

discrepancy between Stcur and Sotcur
, as indicated in Defini-

tion 4.7. In case of a discrepancy between both states, several
cases can be found.

Case 1. The discrepancy does not affect the plan
This case corresponds to a situation where the exogenous

event θ = (ta, p, tc) affects a proposition that has not any
influence in the plan. This means that the proposition p that
causes the discrepancy is not present in the TPG of the plan
and it is not mutex [3] with any other proposition in the TPG.
Formally, TempLM does not detect any failure or opportunity
if:

p /∈ TPGΠ∗ ∧ ¬∃p′ ∈ TPGΠ∗ : mutex(p, p′)

For example, let us assume that this exogenous event (10,
(not (free table Cantinella)), 13h) is received, indicating that
the Cantinella restaurant will not have free tables at 13h. This
does not affect the current plan, given that the restaurant
where the tourist is going to have lunch is a different one.

Case 2. A failure is detected
The second analysis is aimed at detecting a failure caused

by an exogenous event θ = (ta, p, tc). We distinguish two
situations: when the event causes a present failure, that is,
ta = tc = tcur or when it causes a future failure, that is,
ta = tcur < tc. In both cases, a proposition p′ : mutex(p, p′)
which belongs to the TPG is deleted before expected when it
is still needed to reach the goals. Formally, TempLM detects
a failure if:

p′ ∈ TPGΠ∗ ∧ tc < maxn(p′)

For example, if at tcur = 10h an event indicating that
the Cathedral will be closed at 11h arrives, expressed as
θ =(10, (not (open Cathedral)), 11h), a failure is caused be-
cause tc =11h, mutex((not(openCathedral)), (openCathedral))
and tc < maxn(open Cathedral) =13:34h, as it can be ob-
served in Figure 5. In this case, TempLM is able to easily
predict a future failure due to an exogenous event.

Once the failure is detected, two situations can occur: (1)
the problem is unsolvable or (2) the problem can be solved
using other elements defined in the context. In order to distin-
guish these situations, TempLM finds the node (Π, S, TLGΠ∗ex)
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Figure 4. Temporal Proposition Graph of the plan

in the search space built when solving the original problem,
where S = Stcur computed from Π∗ex. If the TLG in this node
is updated with the information about the event θ, this new
information is propagated across the TLG (obtaining TLGθΠ∗)
and an inconsistency [11] between two intervals of a given
proposition is found, then the problem is unsolvable. It is
important to remark that the propositions in the TLG are
necessary to solve the problem (they are landmarks); there-
fore, if an inconsistency is found in the intervals associated to
a landmark, then the problem is unsolvable. Formally:

∃p ∈ TLGθΠ∗ : maxg(p) /∈ [minv(p),maxv(p)]

For example, if the event (10, (not (open Cathedral)), 11h)
arrives, then the problem is unsolvable because, due to θ, the
value of the validity interval of (open Cathedral) changes, i.e.
maxv(open Cathedral) = 11h. This information is propagated
to the proposition (visited T Cathedral) in the TLG∗Π, which
updates maxg(visited T Cathedral) = 11h, indicating that, in
order to reach the goals, the Cathedral must be visited before
11h. Given that this value does not belong to the validity
interval of (visited T Cathedral), as it can be observed in Figure
3, there is an inconsistency in these intervals. Therefore, we
can affirm that the problem, after the arrival of the event, is
unsolvable. In fact, there is not a plan that satisfies the goals,
because even in the case that the Cathedral is the first visit,
it takes 2 hours and then, it would last until 12:05h, which is
later than the time of closing.

In any other case, TempLM performs the search of
a new plan starting from Π∗ex, that is, Π∗r is dis-
carded and substituted by the eventually new plan
found. If, for example, an event indicating that the Ri-
card Camarena restaurant will be fully-booked at 13:45h
(θ =(13, (not (free table Ricardcamarena)),13:45h) arrives,
then TempLM detects a failure because tc =13:45h <
maxn(free table Ricardcamarena) =14:00h. In this situation,
TempLM would be able to find a different solution plan, be-
cause having lunch at Ricard Camarena restaurant is not a

Figure 6. First example of a future opportunity

hard goal; the hard goal is (eaten T), which can be achieved
by having lunch in any other restaurant. Therefore, a new
plan from Π∗ex in which the tourist has lunch in a different
restaurant could be found by TempLM.

Case 3. An opportunity is detected
The last analysis is devoted to detect an opportunity when

a new exogenous event θ = (ta, p, tc) arrives. In this case, p
is a proposition that is achieved before than expected, which
permits to consider an action as finished before its complete
execution. Formally, TempLM detects an opportunity if:

p ∈ TPGΠ∗ ∧ tc < minv(p)

For example, the arrival of an event in which the visit to
the Cathedral finishes at 13h, i.e. θ =(13, (visited Cathedral),
13h), causes the detection of an opportunity. The red arrow in
Figure 6 indicates the new time point at which the proposition
(visited Cathedral) is achieved and the red rectangle indicates

13



Figure 7. Second example of a future opportunity

the available interval of time thanks to this event (which can
be considered as an opportunity). It can be observed that, in
this example, tcur =13h < minv((visited Cathedral)) =13:34h
and the necessity interval of (open Cathedral) and (be T Cathe-
dral) are shrunk because (visited Cathedral) has been achieved
before than expected. At this moment, the recommender sys-
tem could be invoked to obtain a new visit (a new goal) to
be performed during the time interval between 13h and 14h,
before (be T Ricardcamarena). TempLM would obtain a plan
to reach this new goal and then the remaining original plan
would be executed.

There is another case where TempLM can detect an oppor-
tunity:

p ∈ TPGΠ∗ ∧ tc > minv(p)∧

¬∃q ∈ TPGθΠ∗ : maxg(q) /∈ [minv(q),maxv(q)]

This case represents the situation when a proposition is
achieved later than expected, but it does not affect the
achievement of the remaining goals. That is, there is not any
proposition q whose intervals are inconsistent after updating
the TPGΠ∗ with the exogenous event and propagating the
information across the TPGΠ∗ to obtain TPGθΠ∗ .

For example, let us assume that the tourist now prefers
to have lunch between 14:30h and 16h, instead of between
14h and 16h, but the action still takes 90 minutes. This
situation triggers the following exogenous event: θ =(13,
(time for eat T), 14:30h). This event causes that TempLM de-
tects an opportunity because minv(time for eatT) =14:00h
and tc =14:30h; this provokes that minv(time for eat T) is
updated and this information is propagated to minv(eatenT)
(maxg(eaten T) still belongs to the corresponding validity in-
terval). Additionally, the necessity intervals of (time for eat
T), (open Ricardcamarena) and (be T Ricardcamarena) are also
updated, as it is shown in Figure 7. The available time for the
opportunity, also shown in Figure 7, can be used to reach a
new goal recommended by the recommender system, as ex-
plained above.

Thanks to the analysis presented in this section, we have
been able to show how TempLM is able to predict future fail-
ures or opportunities.

6 CONCLUSIONS AND FURTHER
WORK

This paper has introduced a goal reasoning framework where
context information acquired from several external sources
determines a change that may affect the execution of the cur-
rent plan. This change may cause a failure or an opportunity.
We have shown how the planning system, namely TempLM, is
able to predict both failures and opportunities thanks to the
analysis of the Temporal Landmarks Graph and the Temporal
Propositions Graph built for the given problem.

As for further work, our aim is to implement in TempLM
the analysis described in this paper. Then, we will be able
to test the system in a real environment. This will imply an
analysis to decide which events should be considered among
the huge amount of context information that is supplied by
external sources.
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