
Temporal Landmark Graphs for Solving Overconstrained
Planning Problems

Eliseo Marzala, Laura Sebastiaa,∗, Eva Onaindiaa

aUniversitat Politècnica de València,Valencia, 46022, Spain

Abstract

This paper presents TempLM, a novel approach for handling temporal planning prob-
lems with deadlines. The proposal revolves around the concept of temporal landmark,
a proposition that must be necessarily true in all solution plans to achieve the prob-
lem goals within their deadlines. The temporal landmarks extracted from the problem
form a landmarks graph where nodes are landmarks and edges represent temporal as
well as causal relationships between landmarks. The graph comprises information about
which propositions and when these propositions must be achieved in a solution plan,
information that is later used to guide the search process as well as reduce the search
space. Thus, the partial plans of the search tree that are not compliant with the infor-
mation comprised in this graph are pruned. We present an exhaustive experimentation
evaluation in overconstrained and unsolvable problems and we compare the performance
of TempLM with other state-of-the-art planners. The results will show the efficiency of
TempLM in the detection of unsolvable problems.

Keywords: Automated planning, Temporal planning, Deadlines, Landmarks

1. Introduction

Planning is the art of building algorithms that synthesize a course of action, or plan,
that satisfies a set of goals from an initial situation. The aim of automated planning
algorithms is to select the actions and the order in which these actions should be taken to
achieve the problem goals. In temporal settings, the existence of durative actions (actions
with durations) puts the emphasis on which actions to select and how to organize such
actions so as to obtain the optimal makespan plan (plan of minimal duration). Temporal
planning problems are harder to solve due to the temporal relationships between the
action intervals, augmenting the choices of ordering, separation or overlapping of the
actions.

In many real-world temporal planning problems that present, additionally, deadline
constraints, the optimal makespan plan does not necessarily have to be compliant with the

∗Corresponding author
Email addresses: emarzal@dsic.upv.es (Eliseo Marzal), lstarin@dsic.upv.es (Laura Sebastia),

onaindia@dsic.upv.es (Eva Onaindia)

Preprint submitted to Elsevier May 18, 2016

achievement time of the individual goals. Goal deadlines frequently occur in constraint-
based planning, manufacturing operations in supply-chain activities, delivery of goods
or work flow-based systems. In general, handling deadline constraints in temporal plan-
ning has not been much exploited. Finding the proper actions along with their correct
temporal occurrences to meet the problem deadlines requires integrating the planning
machinery to select the actions with temporal reasoning methods to satisfy the deadlines.
Consider, for example, a real-world application like the regional transportation of fish
and seafood by distributor companies. The objective is to daily deliver fresh fish, frozen
products or long-term preserving fish products to supermarkets and restaurants. The
planner will need to choose between ice-cooled or machine-cooled wagons for delivering
goods according to the range of temperatures each wagon is suited for and the freshness
expiration of the goods. Besides these timing restrictions, the planner must also select
the appropriate transport route in terms of the trip duration and the maximum allowed
time that a product can be onto a wagon under a certain temperature or outside a wagon
in case of unloading and reloading (Sen (2010)). This real-world application highlights
the need to make appropriate choices about the wagon and the route to use for the fish
transportation as well as about the temporal organization of the actions.

Deadline constraints have been widely studied in time-constrained problems within
the field of Constraint Satisfaction Problem (CSP) (Rossi et al. (2006)). In these prob-
lems, the objective is to find a schedule for a given set of actions in order to satisfy
the deadlines. In contrast, in temporal planning, the problem also involves selecting the
right actions to satisfy the constraints, which introduces a higher level of difficulty that
is emphasized when dealing with overconstrained problems or unsolvable problems. In
these cases, it is crucial to appropriately exploit the information of the planning problem
in order to promptly detect and discard the actions that are not compliant with the
deadline constrains.

Within the planning community, the first attempt to handle planning problems with
deadline constraints was motivated by the introduction of the PDDL3.0 (Planning Do-
main Definition Language) language in the Fifth International Planning Competition
(IPC-2006)1 (Gerevini et al. (2009)). PDDL3.0 includes the operator within to express
deadlines as well as some specific operators such as sometime-before, sometime-after and
always-within. The two planners that took part in the constraints domain track in the
IPC-2006, namely MIPS-XXL (Edelkamp et al. (2006)) and SGPLAN5 (Chen et al. (2006)),
did not exhibit a good performance or complete accuracy in avoiding deadline violations.
No further advances were done in temporal planning with deadline constraints, with the
notable exception of OPTIC (Benton et al. (2012)), a planner which outperforms MIPS-

XXL and SGPLAN5 on the benchmark of temporal planning problems with soft-constraints
and which also handles deadlines expressed with the within operator.

This paper contributes with a novel approach for solving deadline overconstrained
planning problems. Our planner, TempLM, revolves around the notion of temporal land-
mark, thus extending the definition of a fact which must be true in every solution plan
(landmark) (Hoffmann et al. (2004)) to a temporal context. This paper presents the
evolution of TempLM, which started with the theoretical design of a CSP-based consis-
tency checker to detect unsolvability in planning problems with deadlines (Marzal et al.

1http://www.icaps-conference.org/index.php/Main/Competitions

2

Figure 1: Scheme of TempLM

(2008)). In a later work (Marzal et al. (2014)), we establish the foundations of the tempo-
ral landmarks graph (TLG) and the relationships between the end points of the temporal
landmarks. Subsequently, a first operational version of TempLM (Marzal et al. (2015))
stresses the role of the search engine in the process of finding a solution in overconstrained
problems.

In this paper, we present the last version of TempLM, which has been extensively
tested in a wide variety of problems from the different IPCs. We compare the perfor-
mance of TempLM against the planner OPTIC in loosely-constrained, tightly-constrained
and unsolvable problems. Moreover, we also compare TempLM with a recent approach
focused on solving concurrent temporal problems (Karpas et al. (2015)), which enhances
the incorporation of temporal action landmarks, i.e., durative actions that must nec-
essarily occur in every solution plan. We conducted several experiments to assess the
behaviour of this recent approach in tightly-constrained and unsolvable problems and the
results show that TempLM is much more efficient. Thereby, in this paper we particularly
highlight the contributions that make TempLM be much more superior in the resolution
of overconstrained and unsolvable temporal planning problems.

The structure of this paper follows the flow of Figure 1, which outlines the main stages
of TempLM. Section 2 presents some basic notions on temporal planning and section 3
explains the process for extracting temporal landmarks and building the TLG, labeled
as TL Extraction in Figure 1. Subsequently, section 4 details the propagation of the
temporal constraints across the TLG. Once the TLG is built, the next stage is applying
the Search process to find a solution plan (section 5). One of the novelties of TempLM lies
in the continual planning approach which continuously updates the TLG with the infor-
mation obtained during search and viceversa, as can be observed in Figure 1. Overall,
TempLM is an iterative multi-stage satisfiability planning approach that enables a rapid
detection of unsolvable problems (unsolvability points are marked as diamonds in Figure
1). This is shown in section 6. Finally, we present a thorough empirical evaluation of
TempLM and we assess the performance of TempLM compared to another state-of-the-art
temporal planner, OPTIC, and a novel approach that exploits temporal landmarks for
solving temporal planning problems as well.

3

2. Preliminary concepts

A temporal planning problem P =
〈
P,O, I,G

〉
is characterized by an initial state I,

a goal description G and a set of actions O that can be applied in the domain of the
problem. The set of all propositions in a planning problem is denoted by P . We assume
a subset of the semantics of the temporal model of PDDL2.1 (Fox and Long (2003)), the
Time-Initial Literals (TILs) defined in PDDL2.2 (Hoffmann and Edelkamp (2005)) and
some of the state trajectory constraints introduced in PDDL3.0 (Gerevini et al. (2009)).

A durative action a ∈ O in PDDL2.1 (Fox and Long (2003)) is defined as a tuple
〈dur(a), Cond(a), Eff(a)〉 where dur(a) ∈ R+ is the duration of the action; Cond(a) =
SCond(a)∪ECond(a)∪ Inv(a) (conditions to hold at the start, at the end or overall the
duration of a); Eff(a) = SEff(a)∪EEff(a) (effects produced at the start or end of the
execution of a), which are divided into SEff(a) = {SAdd(a) ∪ SDel(a)} (propositions
added and deleted at the start of a), and EEff(a) = {EAdd(a)∪EDel(a)} (propositions
added and deleted at the end of a).

We define two gaps between a condition c and an effect e of a durative action a: (1)
gapaE(c, e) is the gap between the time point when e is asserted and the earliest time
point when c is needed; and (2) gapaL(c, e) is the gap between the time point when e is
asserted and the latest time point when c is needed2. Specifically:

Condition Effect gapaE gapaL Condition Effect gapaE gapaL
SCond SAdd ε ε SCond EAdd dur(a) dur(a)
Inv SAdd ε −dur(a) Inv EAdd dur(a) ε

ECond SAdd −dur(a) −dur(a) ECond EAdd ε ε

Definition 2.1. A temporal plan Π is a set of pairs (a, t), where a ∈ O and t is the
start execution time of a. Given a proposition p, we denote by start(p) and end(p) the
time points when p is asserted and deleted, respectively, by any action a in Π. The
duration (makespan) of a temporal plan Π is dur(Π) = max∀(a,t)∈Π

(
t + dur(a)

)
.

Definition 2.2. A temporal planning problem with deadline constraints is a
tuple P =

〈
P,O, I,G,D

〉
, where D is a set of deadline constraints of the form (t, p),

denoting that proposition p must be achieved within t time units.

In PDDL, there are two basic ways for expressing a deadline tg over a goal g: explicitly,
by means of PDDL3.0 modal operator within, as stated in Gerevini et al. (2009); and,
implicitly, by means of the PDDL2.2 TILs to express time windows (Marzal et al. (2014)).
We assume that D is a set of constraints such that we are able to establish a deadline tg
for each g ∈ G, and, hence, TΠ = max∀g∈G(tg).

3. Extraction of Temporal Landmarks

The notion of landmark has been widely used in automated planning and has proved
to be a very helpful source of information to guide search towards a solution Hoffmann
et al. (2004).

2ε is used at PDDL2.1 level 3 to express the duration of an instantaneous action, an amount so small
that it makes no sense to split it (Garrido et al. (2002)).

4

Definition 3.1. Let P =
〈
P,O, I,G

〉
be a temporal planning problem. A landmark of

P is a proposition of P that must be satisfied in every plan that solves P.

Let’s now assume that we add some deadline constraints D to P, thus defining a tem-
poral planning problem with deadline constraints P ′ =

〈
P,O, I,G,D

〉
. The landmarks

extracted for P will remain being landmarks in P ′ because a landmark is a true assertion
irrespective of the temporal features of the problem. However, a new set of landmarks
can be discovered in P ′ due to the existence of deadline constraints.

Definition 3.2. Given P =
〈
P,O, I,G,D

〉
, a temporal landmark of P is a proposition

of P that must hold in every plan that solves P in order to satisfy D.

The method we use for extracting the landmarks of a problem is a combination of sev-
eral existing techniques that returns more landmarks than any other known technique
(details can be found in Marzal et al. (2011)). The extraction of temporal landmarks
(Marzal et al. (2014)) draws upon the concepts of first achievers and labels of a proposi-
tion, which are calculated by using a temporal relaxed planning graph (TRPG). A
TRPG is a directed, layered graph that contains proposition levels Pi, the set of propo-
sitions that appear in the relaxation after i time units, and action levels Ai, the set of
actions that are applicable after i time units. TRPG(At) represents the action level at
time t.

Definition 3.3. The first achievers of p ∈ P at time t is the set of actions that may
achieve p at t:

fat(p) = {a ∈ TRPG(At) : p ∈ SAdd(a) ∪ EAdd(a)}

On the other hand, the dependency labels keep information about the propositions
that must necessarily be true in the plan before p is achieved at time t.

Definition 3.4. The dependency labels of p ∈ P at time t, denoted by labelst(p), is
given by:

labelst(p) = {p}∪

 ⋂
∀a∈fat(p)

labelsta (a)

 , where labelsta(a) =

 ⋃
∀c∈Cond(a)

labelst−dur(a) (c)


Both landmarks and temporal landmarks are combined together in a single struc-

ture named Temporal Landmarks Graph. In the following, we will refer to any type of
landmark simply as a landmark, unless stated otherwise.

Definition 3.5. A Temporal Landmarks Graph (TLG) is a directed graph G =
(V,E) where the set of nodes V are landmarks and an edge in E is a tuple of the form
(li, lj ,≺{n,d}) which represents a necessary or dependency ordering constraint between
the landmarks li and lj , denoting that li must happen before lj in a solution plan.

We note that the TLG may contain several instances of the same landmark in case
the landmark has to be achieved several times along the plan.

Landmarks are also annotated with various temporal intervals that represent the va-
lidity of the corresponding temporal proposition (Marzal et al. (2008)). The generation
interval of a landmark is denoted by [ming(l),maxg(l)]. ming(l) represents the earliest

5

Figure 2: Connection between the temporal occur-
rence of a proposition l in the plan (top) and the tem-
poral landmark l in the TLG (bottom)

Figure 3: Initial state and goals of the explana-
tory example.

time point when landmark l can start in the plan. This value is determined by the time
of the proposition layer when l appears in the TRPG. maxg(l) represents the latest time
point when l must start in order to satisfy D and it is initialized as maxg(l) = TΠ. The
validity interval of a landmark l is denoted by ([minv(l),maxv(l)]) and it represents
the longest time that l can be in the plan. Initially, it is set as minv(l) = ming(l)
and maxv(l) = TΠ. Finally, the necessity interval of a landmark l is denoted by
([minn(l),maxn(l)]) and it represents the set of time points when l is required as a
condition for an action to achieve other landmarks. Initially, minn(l) = ming(l) and
maxn(l) = TΠ. Figure 2 shows the relationships between the temporal intervals of a
landmark l in the TLG and the temporal occurrence of such landmarks in the plan
(Marzal et al. (2008)).

Roughly speaking, given a set of deadline constraints D, where (t, l) ∈ D, two ways
of finding temporal landmarks can be defined. The first method is to directly extract
the temporal landmarks from the constraints defined in D, insert them in the TLG,
and update the generation interval of the landmarks. Specifically, ∀(t, l) ∈ D : TL =
TL ∪ l, maxg(l) = t. The second method exploits the idea that the existence of a
deadline constraint in a planning problem rules out the applicability of some actions due
to the time restrictions. Given a landmark l in the TLG, the propositions which l has
some dependencies with at time maxg(l) are the propositions that must be necessarily
achieved in the plan in order to obtain l at time maxg(l). Formally, ∀l ∈ TL : TL =
TL∪labelsmaxg(l)(l). This second method is repeated as long as new temporal landmarks
are found.

Figure 3 shows the initial and goal state of a temporal planning problem. The deadline
constraints, D, are shown in a box. This is a problem of the driverlog domain (Long and
Fox (2003)) which involves trucks moving between locations and delivering packages. We
can observe there are several ways of transporting P1 to S2, either going through S0 or
through S3. However, as P1 must be delivered within 70 time units (t.u.), only the route
through S0 can be used (going through S3 takes at least 75 t.u.). Thereby, (driving D2
T1) and (at T1 S0) are temporal landmarks. Moreover, we have that (within 70 (at P1
S2)) ∈ D and so the proposition l =(at P1 S2) is identified as a temporal landmark by
the first method such that maxg(l) =70. On the other hand, the set labelst(at P1 S2) at
t = 70 contains the propositions (driving D2 T1) and (at T1 S0) and so both propositions

6

Figure 4: Landmarks Graph for the Example (top: after the propagation stage, bottom: modifications
after the analysis of inconsistencies)

become temporal landmarks by applying the second method (see both landmarks in
Figure 4 (top) circled in bold).

Once the intervals of the landmarks are initialized as indicated above, the extrac-
tion algorithm computes the set of necessary and dependency orders between land-
marks (Marzal et al. (2014)). There is a necessary order between li and l (li ≺n l) if
li ∈

⋂
Cond(Amaxg(l)). Likewise, there is a dependency order between li and l (li ≺d l)

if li ∈ labelsmaxg(l)(l). For example, in Figure 4 (top), there is a necessary order be-
tween propositions (driving D2 T1) and (at T1 S1) with proposition (at T1 S0) because
the only way to achieve (at T1 S0) at maxg = 45 is by using the action Drive(T1 S1 S0

D2) whose conditions are satisfied with the propositions (driving D2 T1) and (at T1 S1),
respectively. And there is a dependency order between (at T1 S2) and (at T1 S3) because
landmark (at T1 S2) belongs to the labels of (at T1 S3) at t = 93.

4. Propagation of Temporal Constraints

When a first version of the TLG is built, the next step is to propagate the constraints
and update the temporal intervals of the landmarks accordingly. This is performed in
two stages.

4.1. Analysis of causal and mutex relationships

A causal relationship of the form li ≺{d,n} lj between two landmarks li and lj im-
plicitly establishes some constraints between the endpoints of the temporal intervals.
Specifically:

minv(lj) = max(minv(lj),minv(li) + GAPE(li, lj))
maxg(li) = min(maxg(li),maxg(lj)−GAPE(li, lj))

Moreover, if mutex(li, lj) (Blum and Furst (1997)):

7

maxv(li) = min(maxv(li),minv(lj),maxg(lj)−GAPL(li, lj))
maxg(li) = min(maxv(li),maxg(li))

where GAPE and GAPL are the general case of gapE and gapL, respectively; i.e., the
gap between two landmarks li and lj connected through a dependency order (li ≺d lj):

GAP{E,L}(li, lj) = min(GAP{E,L}(li, l) + gap{E,L}(l, lj))

where ∃a ∈ O : l ∈ Cond(a) ∧ lj ∈ SAdd(a) ∪ EAdd(a). In case of li = lj then
GAP{E,L}(li, lj) = 0.

These constraints are propagated across the TLG when the interval of a landmark is
modified. Specifically, minv values are propagated forwards from the initial state whereas
maxg and maxv values are propagated backwards from the goal.

In Figure 4 (top), it holds (at T1 S3) ≺n (at P2 S3) and maxg(at P2 S3)=95 because of
the deadline in D. The action that causes the necessary order is a =Unload(P2 S3 T1)

with dur(a) = 2; therefore, maxg(at T1 S3)=95-2=93, indicating that, in order to achieve
(at P2 S3) at 95, (at T1 S3) must be true at 93; or, equivalently, gapaE = 2. Similarly,
(in P2 T1)≺n(at P2 S3) and (at T1 S3)≺n(at P2 S3) in Figure 4 (top), which implies that
minv(at P2 S3)=max(minv(in P2 T1)+2, minv(at T1 S3)+2)=88, indicating that the first
time point when (at P2 S3) can be valid is 88, which is a more accurate bound in contrast
with ming(at P2 S3), which indicates that the first time it is achieved in the TRPG is 70.

On the other hand, given that (at T1 S2) and (at T1 S3) are mutex and the existence of
a dependency order between them, we update maxv(at T1 S2) to the value 73, indicating
that (at T1 S2) will be no longer valid from 73 onwards. However, this proposition is
necessary to achieve (at P3 S2) between 90 and 150. Next section describes how to solve
this inconsistency.

4.2. Computation of the necessity intervals

The necessity interval of a landmark li is computed by taking into account all the
necessary orders for which li is needed as a condition to generate another landmark.
Thus, ∀lj : ∃li ≺n lj , the necessity interval of li is calculated as:

minn(li) = min∀lj :∃li≺nlj (minv(lj)−GAPE(li, lj))
maxn(li) = max∀lj :∃li≺nlj (maxg(lj)−GAPL(li, lj))

If a landmark l is needed beyond its validity interval, that is, [minn(l),maxn(l)] 6⊆
[minv(l),maxv(l)], then it implies that some information is missing in the TLG. Specif-
ically, this case induces that another instance of the landmark l, namely l′, must be
added to the TLG to support the fragment of [minn(l),maxn(l)] that is not supported
by [minv(l),maxv(l)]. Once l′ is created, its temporal intervals are initialized. Then, we
analyze the landmarks with which l maintains some dependency. For all propositions li
whose propagation of maxg(li) updates maxn(l), the constraint l′ ≺n li is straightfor-
wardly inferred. For the rest of landmarks lj that do not need l at maxn(l) for being
generated, the relation between l and lj is maintained. Finally, the new orderings are in-
serted in the TLG and propagated. For example, as explained above, maxv(at T1 S2)=73
due to a mutex relationship and this is inconsistent with maxn(at T1 S2)=150. In this
case, l is the first landmark that appears in Figure 4 (bottom) and l′ is the landmark
in grey. l′ is added to the TLG, where li =(at P3 S2) and lj =(at T1 S3), and all the
intervals are updated accordingly.

8

5. Searching for a solution plan

TempLM applies a search process in the space of partial plans in order to find a solution
plan for a problem P =

〈
P,O, I,G,D

〉
(Marzal et al. (2014)). Given a node n of the

search tree, a successor of n results from adding an executable action a to the partial
plan of n, provided that a does not cause conflicts with the actions of n. Hence, the
plan of the successor node will contain a newly added action, information which can be
exploited to find new temporal landmarks in the TLG (Marzal et al. (2015)).

Let’s assume, for instance, that we have another truck T2 at location S1 in the problem
of Figure 3. In this case, the TLG of the problem would only comprise the propositions
in I and G because it is not possible to determine which truck must be used to transport
each package. However, if package P1 were loaded in T1 then we could infer that we
must use T1 to transport P1 to S2 because otherwise there would not be enough time to
unload P1 from T1, load it again in T2 and transport it to S2 in time. In this situation, a
new landmark (at T1 S2) would be discovered when the action (load P1 T1 S1) along with
its effect (in P1 T1) is inserted in the plan. Thereby, we can associate a distinct TLG
to each search node n accordingly to the plan of n. This will provide a helpful guidance
during search because the TLG at each node is a much more informative graph than the
TLG of the problem (root node).

A node in the search tree is defined as n = (Π, St, TLGΠ), where Π is the conflict-
free partial plan of n, St is the state reached at time t = dur(Π) after the execution
of Π from I and TLGΠ is the refined TLG after taking into account the information in
Π. TempLM applies a A? search algorithm guided by the standard evaluation function
f(n) = g(n) + h(n), where g(n) = dur(Π) accurately reflects the cost of n since dur(Π)
accounts for the parallelism of Π; and h(n) is a non-admissible heuristic based on action
landmarks for sub-optimal temporal planning. Particularly, given n = (Π, St, TLGΠ), we
apply the following evaluation function, f(n) = g(n) +h(n) = dur(Π) +hLM−cut

temp (St, G).

hLM−cut
temp is a temporal approximation of the well-known landmark cut heuristic

hLM−cut, which has been successfully used in optimal sequential planning (Helmert and
Domshlak (2009)). When adapting the LM-cut heuristic to a temporal context, the cost
of an action is its duration. Then, h(n) is an estimate based on the makespan of a se-
quential plan that neglects overlapping actions, which, obviously, is an overestimate of
the actual plan makespan. Consequently, we can affirm TempLM does not guarantee to
find the optimal solution, the one with shortest duration.

Algorithm 1 details the search process of TempLM, which starts with the root node
(∅, I, TLG). When the node n = (Π, St, TLGΠ∗) with the lowest f(n) value is selected
from the open list SS3, we first check whether the end conditions of the actions in Π that
finish at t are fulfilled in state St; otherwise, the successors of n are not generated (steps
5 to 7 of Algorithm 1). If n represents a solution plan, Π is returned and the process
stops (steps 8 to 10). Otherwise, TLGΠ∗ of n is replaced by TLGΠ, which is the result
of refining TLGΠ∗ by including the new landmarks derived from the plan Π (step 11,
which will be detailed in section 5.2). Then, we generate the successors of n (step 12),
as described in Algorithm 2. Finally, for each successor n′ of n, f(n′) is calculated and
n′ is inserted in SS, which is implemented as a priority queue.

3TLGΠ∗ refers to the TLG of the parent node. This will be later explained.

9

Algorithm 1 Algorithm for searching a solution plan

1: Input: P, TLG
2: SS ← {(∅, I, TLG)} {Initialization of the search space}
3: while SS 6= ∅ do
4: n = (Π, St, TLGΠ∗)← Pop(SS)
5: if ∃a ∈ Π : end(a) = t ∧ ECond(a) /∈ St then
6: discard n and return to step 4
7: end if
8: if isSolution((Π, St, TLGΠ∗)) then
9: return Π

10: end if
11: if TLGΠ = refinementTLG(Π, St, TLGΠ∗) then
12: Suct = calculateSuccessors(Π, St, TLGΠ)
13: for n′ = (Π′, St′ , TLGΠ) ∈ Suct do
14: push (SS, (Π′, St′ , TLGΠ), f(n′))
15: end for
16: end if
17: end while
18: return no solution

5.1. Computation of successors

Algorithm 2 computes the successors of a node (Π, St, TLGΠ). First, we calculate
the set of initially applicable actions in St (step 3 of Algorithm 2) as: Ot = {a ∈ O :
SCond(a) ∪ Inv(a) ⊆ St}. Only reversible actions that lead to an already visited node
are ruled out during the node expansion. By definition, an action a ∈ Ot is always
applicable in St of a node (Π, St, TLGΠ) at time t but a may be also executable before t
in Π. This consideration may suppose a significant difference in the plan makespan. For
this reason, the algorithm computes the earliest start time of each new action (step 5).

Definition 5.1. Given a node (Π, St, TLGΠ) and an action ai ∈ Ot, the earliest start
time of ai (denoted by tai

E) is the first time point from I where ai is applicable and
does not interfere with any other action in Π. Action (ai, t

ai

E) is said to interfere with
the action (aj , taj

) ∈ Π if any of the following situations holds: (1) ∃p ∈ Inv(aj) and
ai deletes p within the execution interval of aj ; (2) ∃q ∈ SCond(aj) and ai deletes q
between the time point when q is produced and taj ; and (3) ∃r ∈ ECond(aj) and ai
deletes r between the time point when r is produced and taj + dur(aj).

The function createSucc in Algorithm 2 creates a new successor (Π′, St′), where
Π′ = Π ∪ (a, taE) (plan resulting from adding (a, taE) in Π at time taE), t′ = dur(Π′) and
St′ is the state reachable after executing Π′. Computing St′ requires executing all actions
a′ ∈ Π′ that start or end in the interval (taE , t

′) and updating the states at each time
instant accordingly to SAdd(a′), SDel(a′), EAdd(a′) and EDel(a′).

If the information of the propositions in Π′ is compliant with the landmarks of TLGΠ,
the TLG of the parent node, then the successor is a valid node (step 7 of Algorithm 2)
and will be inserted in the successor list. Otherwise, the node will be invalid, meaning
that Π′ is not a correct plan that leads to a solution plan (see section 6 for details). Note

10

Algorithm 2 Function calculateSuccessors of a node

1: Input: (Π, St, TLGΠ)
2: successorsList = ∅
3: Ot = initiallyApplicableActions(St)
4: for a ∈ Ot do
5: taE = earliestStartT ime(Π, St, a)
6: (Π′, St′) = createSucc(Π, St, a, t

a
E)

7: if ¬invalidNode(Π′, St′ , TLGΠ) then
8: append(successorsList, (Π′, St′ , TLGΠ))
9: end if

10: end for
11: return successorsList

that we check the validity of the successor node (Π′, St′) with respect to TLGΠ and not
TLGΠ′ . The reason is that the TLG refinement is a very costly process that we only
apply when a node is selected for expansion from the open list SS (Algorithm 1), thus
avoiding re-calculating the TLG of nodes that might never be expanded. Although we
may lose some valuable information, this results in an important cost saving that largely
benefits the performance of TempLM.

5.2. TLG refinement

The key principle of the TempLM search procedure is that instead of guiding the search
with the TLG of the root node, each node is associated to its own TLG, which will reflect
the information comprised in the plan of the node. Specifically, let n = (Π, St, TLGΠ)
and n′ = (Π′, St′ , TLGΠ′), a successor of n. Since Π′ contains one more action than
Π, TLGΠ′ will most likely change w.r.t. TLGΠ so the aim is to compute TLGΠ′ as a
refinement of TLGΠ by taking into account the newly added action.

We simulate the execution of Π′ from I, obtaining the set of propositions that are true
in S′t and the set of all propositions that have been deleted from I, say Ldel. If it exists
li ∈ Ldel, and lj is a landmark of TLGΠ that is not yet achieved in Π′, and li ≺n,d lj is a
relationship in TLGΠ, then we have to repair the graph of n′ so as to restore the support
of lj and ensure that lj will be achievable. The result of this refinement operation is
TLGΠ′ , a more informed and adapted graph to the plan Π′ of n′.

The TLG refinement process consists in extracting new temporal landmarks for sup-
porting lj from the information comprised in Π′. This local extraction of landmarks
follows exactly the same steps explained in section 3 and so the first step is to build a
TRPG from I ′ to G′ where:

• I ′ is the initial state, I ′ = St′ . Instead of placing the propositions of I ′ at t = 0,
the first proposition layer of the TRPG, each proposition is set at the specific time
point at which it is achieved in Π′. This way, the TRPG reflects a reliable picture
of the current situation that represents the plan Π′ .

• G′ is the goal state, the set of landmarks of TLGΠ that are not present in Π′ and
whose support has been invalidated by a proposition of Ldel (i.e., lj).

11

By using the TRPG from I ′ to G′, we are able to calculate the new set of tempo-
ral landmarks (labelsmaxg(lj)(lj)); that is, the necessary propositions to achieve lj at
maxg(lj). TLGΠ′ is then completed with the causal relationships between landmarks
and, finally, constraints are propagated across the TLG. The local refinement of TLGΠ′

may fail in two situations, in which case the node n′ is discarded: (1) if lj ∈ G′ is not
reached in the TRPG before maxg(lj) and (2) if, during the constraint propagation, an
inconsistency is found.

Let’s consider again the example introduced at the beginning of Section 5 where a
new truck T2 is located at S1 and we have only the goal (at P1 S2). And let’s assume
a plan Π composed solely of the action (Board D2 T1 S1) (1 t.u.). We can find two
successors of Π: (1) (Drive T1 S1 S0 D2) at t=1 with a duration of 42 t.u.; and (2)
(Load P1 T1 S1) at t=0 with a duration of 2 t.u. Successor (1) is discarded because if
we apply (Drive T1 S2 S0 D2) then (at P1 S2) would be unachievable within 70 t.u.;
that is, (at P1 S2) is unachievable within 70 because P1 is not loaded in T1 in successor
(1) and although we have a second truck, T2, we have no other driver for driving T2.
This leads us to successor (2), where we apply the TLG refinement. Since G′ = {(at
P1 S2)} and the dependency order (at P1 S1) <d(68) (at P1 S2) is broken due to the
introduction of the action (Load P1 T1 S1) in Π′, the proposition (at P1 S2) must be
re-achieved such that maxg(at P1 S2)=70. Following the steps described above, we find
two new landmarks, (at T1 S0) and (at T1 S2) as a consequence of the action of loading
P1 in T1. Thereby, TempLM infers that T1 must go first to S0 (42 t.u.) and then to S2

(23 t.u.) in order to unload P1 in S2 on time (2 (load)+ 42 (S1-S0) + 23 (S0-S2) + 2
(unload))=69.

5.3. Correctness and complexity of the search algorithm

The search algorithm that we introduce is correct, as the following theorem shows.
Theorem: Given a problem P =

〈
P,O, I,G,D

〉
, Algorithms 1 and 2 guarantee

that, if a plan Π is returned, then Π is a correct solution for P.
Proof: Π is correct if the actions in Π are successively applicable in the state St of

each node n of the tree and G holds in the final state and D is satisfied. The applicability
of the actions in Π is guaranteed by Algorithm 2 since this algorithm calculates in each
node n of the tree the state St that results from executing the plan contained in n and
only creates successors of n with actions that area applicable in St (step 3, Algorithm
2). The satisfaction of G is guaranteed by Algorithm 1, step 8, which only stops when
G ⊆ St. And the satisfaction of D is guaranteed by step 7 of Algorithm 2, which only
generates nodes compliant with the landmarks of the TLG and, consequently, with D.�

With respect to the complexity of these algorithms, we can distinguish two aspects.
First, the search itself, which is a non-admisible A*, has a complexity of O(b(TΠ/min dur action),
where b is the branching factor of the problem and min dur action is the minimum du-
ration of all the actions in the problem. Second, the TLG refinement applied in each
expanded node consists in (1) computing a local TRPG (O(|P ||O|)) and (2) propagating
the information in the TLG (O(|V |2), where |V | is the number of landmarks in the TLG.

12

6. Detection of unsolvable problems

Figure 1 shows the stages of TempLM and the three points where an unsolvable prob-
lem can be identified. In the following, we analyze the three situations of unsolvability.

The first point occurs during the construction of the TRPG, where an unsolvable
problem is found if ∃g ∈ G : fa(g)maxg(g) = ∅. This condition indicates there is no
sequence of actions that reach g ∈ G independently and, therefore, we can affirm the
problem is unsolvable.

The second point occurs during the propagation of the temporal constraints across
the TLG, particularly when an inconsistency between the endpoints of the temporal
intervals of a landmark is found (Figure 2 bottom shows the relationships that must exist
between the temporal intervals of a landmark). Two types of unsolvable inconsistencies
identified in the TLG allow us to discard the corresponding node:

1. maxg(l) < minv(l), meaning that l has to be generated before it can actually be
achieved in the plan (due to the relationships of previous landmarks).

2. A temporal interval of l becomes empty: ming(l) > maxg(l)∨minv(l) > maxv(l)∨
minn(l) > maxn(l). This is an indication that the proposition l will never be
achieved in the plan.

For example, what would happen if the deadline of l =(at P2 S3) were 80 instead of
95?. Since its validity interval is [88, 150], an inconsistency is found with its generation
interval [70, 80]. Specifically, the deadline constraint is maxg(at P2 S3)=80 and maxg(l) <
minv(l). It is important to remark that this inconsistency will not be discovered during
the TRPG construction because the first time layer at which (at P2 S3) appears is 70;
i.e. ming(at P2 S3)=70. Therefore, any deadline greater than 70 would be found as
satisfiable during the construction of the TRPG. However, our TLG would detect any
deadline lower than 88 (minv) and hence the problem would be labeled as unsolvable.

The third point where an unsolvable problem is detected occurs during the search
of a plan. If the search space eventually becomes empty, we can affirm the problem is
unsolvable. The logical and temporal consistency of the plan of a search node is based
on its TLG. This way, there are two points where a node can be discarded: (1) when the
TLG refinement fails (see Section 5.2) and (2) when the node is found invalid due to one
of the conditions exposed in Definition 6.1.

Definition 6.1. A node (Π, St, TLGΠ) is said to be invalid if one of these two situations
holds:

1. Temporal intervals: If the start(l) and/or end(l) of a landmark l in a plan Π is
not consistent with its validity and/or generation interval, then Π is pruned. Thus,
the corresponding node is discarded if any of the following conditions holds:

(a) start(l) < minv(l)
(b) start(l) > maxg(l)
(c) end(l) > maxv(l) (applicable if end(l) is known)

2. Causal relationships: Given a pair of landmarks li and lj in Π, such that li ≺{d,n}
lj in its TLG, if start(li) ≥ start(lj), Π is pruned.

13

It is important to remark that the three points for detecting unsolvability ensure that
an unsolvable problem will be always identified provided that TempLM is given enough
time, because it will eventually exhaust the search space.

Consider the following partial plan generated during the search process to solve our
running example:

t=0: (Board D2 T1 S1) (1 t.u.)

t=1: (Drive T1 S1 S3 D2) (55 t.u.)

The proposition l=(at T1 S3) is inserted by the action (Drive T1 S1 S3 D2) at
t = 56; that is, start(l) = 56. However, according to the TLG of Figure 4, we observe
that minv(l) = 86; consequently, the node is discarded because start(l) < minv(l). This
is the right decision considering that (in P1 T1) has not yet been achieved in the plan,
and maxg(in P1 T1)=3, which would be impossible to fulfill in this plan because T1 is
no longer at S1, where P1 is.

7. Experimental evaluation

We created two configurations of our approach: TempLM-TLG, which only uses the
TLG of the initial state of the problem, and TempLM-REF, which incorporates the TLG
refinement, thus creating a TLG per node of the search space. We selected eleven domains
from the International Planning Competitions (IPC4) that fit our requirements: deadlines
expressed by means of TIL or within, with no metric features or ADL. Specifically, we
selected one domain from the IPC-2000, Logistics; five domains from the IPC-2002,
DriverLog, Depots, Rovers, ZenoTravel and Satellite; two domains from the IPC-2004,
Satellite and PipesWorld and three domains from the IPC-2011, Parking, Pegsol and
Floortile.

We performed three sets of experiments: (1) a comparison of the two TempLM con-
figurations with OPTIC, a state-of-the-art planner that handles deadlines expressed with
TILs and the within operator (Benton et al. (2012)), over a set of tight and unsolvable
problems; (2) a comparison of the two TempLM configurations with OPTIC over a set of
problems with randomly generated deadlines; and (3) a comparison of the two TempLM
configurations with the approach presented in Karpas et al. (2015). All the experiments
were censored after 30 minutes and they were performed in an Intel-Core-i5-3.2-GHz
with 16GB-RAM.

First experiment. We created a set of overconstrained problems and a set of
unsolvable problems for every domain5. Using the original problems from the IPCs as
a baseline, tight problems were generated by defining a deadline to all the goals of a
problem P as follows: ∀g ∈ G,maxg(g) = bpm + bpm ∗ v, where bpm is the makespan of
the best solution plan found by any planner to P and v is a random value in [0, 0.20].
Subsequently, unsolvable problems were generated by tightening the existing deadlines
up to the point where no plan was found6.

The results obtained for the set of tight problems are presented in Figures 5, 7, 9, 11
and 13, where we show the makespan (Mk) of the resulting plan and the computation

4http://www.icaps-conference.org/index.php/Main/Competitions
5Except Satellite from IPC-2002, given that we used the IPC-2004 version of this domain.
6The generated problems are available at https://goo.gl/gLTKEC

14

TempLM-TLG TempLM-REF OPTIC
Mk Time Mk Time Mk Time

Driver
D01T 91 0.05 91 0.12 92 1.31
D02T 47 5.18 40 26.25 40 11.76
D03T 51 58.4 51 163.82 80 309.37
D04T 49 69.56 49 141.74 49 23.42
D05T 98 302.85 98 131.02 144 130.58
D06T 128 264.72 128 1108.77 126 158.84
D07T 37 24.90 37 55.79 - T.E.
D08T 98 97.74 98 344.28 120 389.63
D09T 76 24.61 76 94.782 - T.E.
D10T 49 81.69 49 142.73 49 21.46

Zeno
Z01T 592 0.12 592 0.45 592 3.45
Z02T 592 0.11 592 0.38 592 3.43
Z03T 393 8.8 393 18.12 - T.E.
Z04T 542 17.52 542 34.07 536 625.35
Z05T 522 24.95 529 8.49 - T.E.
Z06T 320 34.36 320 38.29 - T.E.
Z07T 333 26.54 333 37.31 - T.E.
Z08T 665 35.14 665 54.21 - T.E.
Z09T 430 1144.29 559 1547.08 576 1729.69
Z10T 665 380.92 665 33.43 - T.E.

Figure 5: Results for the tight problems (1)

TempLM-TLG TempLM-REF OPTIC
D Time D Time D Time

Driver
D01U R 0.01 R 0.01 U 0.14
D02U R 0.01 R 0.01 U 0.13
D03U S 295.13 S 9.33 - T.E.
D04U - T.E. S 679.35 - T.E.
D05U - T.E. S 1095.74 - T.E.
D06U R 0.01 R 0.01 U 0.16
D07U S 395.29 S 792.49 - T.E.
D08U R 0.01 R 0.01 U 0.11
D09U S 351.14 S 39.11 - T.E.
D10U S 346.03 S 34.99 - T.E.

Zeno
Z01U R 0.01 R 0.01 U 0.14
Z02U S 1.11 S 0.27 - T.E.
Z03U - T.E. S 14.41 - T.E.
Z04U S 704.15 S 31.37 - T.E.
Z05U S 592.26 S 5.16 - T.E.
Z06U S 575.35 S 4.77 - T.E.
Z07U - T.E. S 104.71 - T.E.
Z08U R 0.01 R 0.01 U 0.16
Z09U - T.E. S 96.46 - T.E.
Z10U - T.E. S 36.25 - T.E.

Figure 6: Results for the unsolvable problems (1)

time (in secs.) required by each approach. For the unsolvable problems, presented in
Figures 6, 8, 10, 12 and 14, we also show where the unsolvability was detected: during
the construction of the TRPG (R), when propagating the temporal constraints in the
TLG (G) or during the search (S). The U symbol in the OPTIC results indicates that
OPTIC was capable of detecting the unsolvable problem. The symbol T.E. stands for
Time Exhausted.

With respect to tight problems, TempLM outperforms OPTIC in almost all the do-
mains, except in the Driverlog and Satellite domains, where OPTIC improves TempLM in
some of the problems in terms of computational time and makespan (Figures 5 and 13).
However, in the Zeno, Depots, Logistics and Floortile domains, OPTIC is only capable
of solving a few problems. In the rovers domain, both configurations of TempLM obtain
a makespan shorter than OPTIC in almost all of the problems whereas this difference is
not so remarkable in the Pipesworld and Pegsol domains. In these last three domains,
TempLM-TLG is much faster than OPTIC. In general, the plans returned by TempLM-REF
are the same as the plans of TempLM-TLG although TempLM-REF is more costly due to
the TLG refinement process. The explanation for this is also accompanied with the fig-
ures in Table 1. Although the number of expanded and generated nodes is always lower
in TempLM-REF, calculating a TLG in each search node considerably increases the com-
putation time in some instances. However, thanks to the TLG refinement, TempLM-REF
solves a few more instances than TempLM-TLG.

With respect to the unsolvable problems, TempLM-REF clearly outperforms both
TempLM-TLG and OPTIC, in the number of detected problems as well as computation
time except in the Pegsol domain (Figures 6, 8, 10, 12 and 14). OPTIC is only able
to detect 19 unsolvable problems out of 90, whereas TempLM-REF is able to detect all
of them. Particularly, TempLM-REF identifies 16 out of these 19 unsolvable problems
during the TRPG expansion, two during the TLG generation and one during the search
process (this latter case is the only one which OPTIC detects earlier). The benefit of the

15

TempLM-TLG TempLM-REF OPTIC
Mk Time Mk Time Mk Time

Pipes
PI01T 6 0.16 6 0.24 6 1.44
PI02T 18 0.56 18 6.09 18 46.22
PI03T 14 0.59 14 2.78 14 3.5
PI04T 16 7.39 16 17.41 20 245
PI05T 12 1.84 12 6.89 14 4.12
PI06T 14 1.3 14 5.18 14 118.85
PI07T 12 2.12 12 4.42 12 1179.89
PI08T 14 3.09 14 6.57 14 4.29
PI09T 18 22.46 18 71.88 18 4.5
PI10T 22 1234.37 24 653.88 - T.E.

Pegsol
PE01T 7 0.4 7 3.26 7 21.46
PE02T 6 1.01 6 1.94 8 56.92
PE03T 7 0.49 7 4.13 7 53.28
PE04T 9 28.86 9 107.61 - T.E.
PE05T 8 25.46 8 47.66 - T.E.
PE06T 10 22.9 10 167.47 10 236.86
PE07T 7 0.1 7 0.99 7 9.13
PE08T 7 1.94 7 14.73 7 118.56
PE09T 7 4.01 7 25.47 8 1300.06
PE10T 10 84.84 10 514.46 - T.E.

Figure 7: Results for the tight problems (2)

TempLM-TLG TempLM-REF OPTIC
D Time D Time D Time

Pipes
PI01U R 0 R 0 U 3.45
PI02U S 0.85 S 1.92 - T.E.
PI03U S 31.79 S 27.50 - T.E.
PI04U S 54.99 S 35.26 - T.E.
PI05U S 397.79 S 190.22 - T.E.
PI06U S 368.97 S 133.28 - T.E.
PI07U S 135.78 S 33.38 - T.E.
PI08U S 1120.21 S 81.6 - T.E.
PI09U - TE S 157.41 - T.E.
PI10U - TE S 282.34 - T.E.

Pegsol
PE01U G 0.01 G 0.01 U 87.2
PE02U S 8.86 S 9.17 - T.E.
PE03U S 71.69 S 946.65 - T.E.
PE04U S 63.52 S 807.14 - T.E.
PE05U S 14.21 S 150.32 U 27.53
PE06U R 0.01 R 0.01 U 0.11
PE07U R 0.01 R 0.01 U 0.11
PE08U G 0.01 G 0.01 U 183.09
PE09U S 3.27 S 50.43 - T.E.
PE10U S 72.77 S 992.32 - T.E.

Figure 8: Results for the unsolvable problems (2)

TLG refinement process is noticeable in these problems, where the computational time
required by the search process is cut off drastically thanks to the nodes discarded when
the TLG refinement fails. The only exception is the Pegsol domain, where TempLM-REF
is more costly than TempLM-TLG. The reason can be found in Table 1; in this domain,
the reduction in the number of expanded and generated nodes between TempLM-TLG
and TempLM-REF is not so remarkable as in the other domains, so the TLG refinement
does not payoff in this domain. Note that the number of generated and expanded nodes
in Table 1 coincides for the unsolvable problems because the search space is exhausted.
We do not show results of generated and expanded nodes in the unsolvable problems of
Depots domain because TempLM-REF only detects unsolvability by using TLG.

Following the results in Figures 5 to 14, we conclude that TempLM-REF is the only
approach that identifies all unsolvable problems. In the set of overconstrained or tight
problems, TempLM-REF is more costly than TempLM-TLG but it solves a few more in-
stances and returns the same solutions than TempLM-TLG. All in all, TempLM is a
promising approach for overconstrained problems and particularly for rapidly detecting
unsolvability.

Second experiment. We created a set of problems with random deadlines for the
problem goals. We applied the same formula for maxg(g) of the first experiment but
now each g is associated to a different deadline. More specifically, the parameter v takes
a value higher than 0.30 for generating the loose problems and a value in between [0,
0.30] for generating the tight problems. Table 2 shows the overall number of problems
generated for each domain7, the number of problems solved by at least one of three
approaches (second column) and how many out of these solved problems turned out to

7In this second experiment, the Satellite and Pipesworld domains from IPC-2004 were not used
because deadlines are specified through TILs and it turns out difficult to generate correct random
deadlines.

16

TempLM-TLG TempLM-REF OPTIC
Mk Time Mk Time Mk Time

Floor
F01T 15 0.68 15 3.19 - T.E.
F02T 12 0.92 12 4.97 - T.E.
F03T 22 4.02 22 24.61 - T.E.
F04T 19 1.03 19 4.66 - T.E.
F05T 19 1.3 19 6.58 - T.E.
F06T 20 1.03 20 4.83 - T.E.
F07T - T.E. 22 50.69 - T.E.
F08T 20 2.48 20 5.88 - T.E.
F09T 21 5.31 22 11.73 - T.E.
F10T - T.E. 19 49.37 - T.E.

Rovers
R01T 47 0.50 47 0.45 47 2.1
R02T 57 2.10 57 6.59 57 3.02
R03T 50 0.07 50 0.66 45 270.04
R04T 93 0.8 93 4.25 - T.E.
R05T 45 0.31 45 0.82 104 1021.41
R06T 125 22.28 125 10.54 - T.E.
R07T 73 10.15 73 22.16 78 9.34
R08T 88 5.76 88 6.49 93 33.18
R09T 145 30.29 145 53.074 - T.E.
R10T - T.E. 115 14.98 130 226.3

Figure 9: Results for the tight problems (3)

TempLM-TLG TempLM-REF OPTIC
Time Time Time

Floor
F01U S 441.49 S 525.28 - T.E.
F02U S 186.67 S 77.25 - T.E.
F03U S 303.27 S 246.24 - T.E.
F04U S 215.75 S 119.86 - T.E.
F05U S 251.63 S 168.54 - T.E.
F06U G 0.01 G 0.01 - T.E.
F07U - T.E. S 1254.86 - T.E.
F08U S 300.66 S 290.63 - T.E.
F09U S 232.22 S 136.81 - T.E.
F10U S 369.11 S 295.33 - T.E.

Rovers
R01U G 0.01 G 0.01 - T.E.
R02U S 886.62 S 77.92 - T.E.
R03U G 0.01 G 0.01 - T.E.
R04U G 0.01 G 0.01 - T.E.
R05U G 0.01 G 0.01 - T.E.
R06U R 0.01 R 0.01 U 0.14
R07U R 0.01 R 0.01 U 0.17
R08U G 0.01 G 0.01 - T.E.
R09U S 553.67 S 89.94 - T.E.
R10U R 0.01 R 0.01 - T.E.

Figure 10: Results for the unsolvable problems (3)

Unsolvable Tight
TempLM-TLG TempLM-REF TempLM-TLG TempLM-REF
Exp Gen Exp Gen Exp Gen Exp Gen

Driverlog 202626 202626 91047 91047 78851 289003 51115 166063
ZenoTravel 122865 122865 12903 12903 30184 283006 14653 161912

Satellite-TIL 38222 38222 26060 26060 5090 191338 1260 17542
Pipes-TIL 100553 100553 18920 18920 100553 100553 18920 18920

Pegsol 59147 59147 56620 56620 16550 77714 13007 62190
Floortile 456292 456292 82441 82441 2513 9024 1844 6650
Rovers 151545 151545 8132 8132 2291 16769 1462 12670
Depots - - - - 1783 7016 1783 7016

Logistics 264420 264420 38203 38203 34034 127996 34022 127996

Table 1: Number of generated and expanded nodes for unsolvable and tight problems

be loose, tight or unsolvable. Table 3 shows the number of problems of each type solved
by the three approaches.

As we can observe in Table 3, TempLM-TLG is the approach that solves more instances
including the three problem types. OPTIC deals better with loose problems and its
performance degrades as more tight deadlines are involved in the problems. In contrast,
TempLM-REF behaviour is the opposite of OPTIC. The results of Table 3 also show
that the performance of the three approaches vary along the domains. Thus, OPTIC
results are better in domains where there exist several different plans for a problem such
as Driverlog, Parking and Satellite domains. On the other hand, TempLM-TLG and
TempLM-REF perform better in domains which involve many interactions among the
goals such as Pegsol, Floortile, Depots or Logistics domains.

Figures 15 to 20 compare the makespan and computation time of the problems (loose
and tight) that were solved by the three approaches. We selected three domains in
which the approaches exhibit a different performance: Pegsol domain shows the worst
computational time for OPTIC (Figure 16), TempLM-REF is outperformed by OPTIC

17

TempLM-TLG TempLM-REF OPTIC
Mk Time Mk Time Mk Time

Depots
DE01T 27 0.21 27 0.53 27 2.31
DE02T 27 0.11 27 0.48 27 2.27
DE03T 27 0.11 27 0.49 27 2.31
DE04T 41 31.73 43 103.13 74 373.13
DE05T 31 128.05 - T.E. - T.E.
DE06T 31 123.95 - T.E. - T.E.
DE07T 36 75.18 - T.E. - T.E.
DE08T 57 121.61 - T.E. - T.E.
DE09T 57 120.74 - T.E. - T.E.
DE10T 57 122.44 - T.E. - T.E.

Logistics
L01T 43 2.10 43 0.61 - T.E.
L02T 43 0.08 43 0.23 - T.E.
L03T 43 0.08 43 0.25 56 4.08
L04T 22 0.03 22 0.06 22 1.59
L05T 43 0.07 43 0.18 - T.E.
L06T 47 44.55 47 153.72 - T.E.
L07T 77 40.69 77 130.34 - T.E.
L08T 68 180.01 68 350.52 - T.E.
L09T 56 6.02 56 18.33 - T.E.
L10T 67 78.88 67 279.30 - T.E.

Figure 11: Results for the tight problems (4)

TempLM-TLG TempLM-REF OPTIC
Time Time Time

Depots
DE01U - T.E. S 595,62 - T.E.
DE02U G 0.01 G 0.01 - T.E.
DE03U - T.E. S 628.37 - T.E.
DE04U G 0.01 G 0.01 - T.E.
DE05U G 0.01 G 0.01 - T.E.
DE06U - T.E. S 303.23 - T.E.
DE07U G 0.01 G 0.01 - T.E.
DE08U G 0.01 G 0.01 - T.E.
DE09U G 0.01 G 0.01 - T.E.
DE10U G 0.01 G 0.01 - T.E.

Logistics
L01U G 0.01 G 0.01 - T.E.
L02U S 59.35 S 27.36 - T.E.
L03U R 0.01 R 0.01 - T.E.
L04U G 0.01 G 0.01 - T.E.
L05U S 62.56 S 20.55 - T.E.
L06U G 0.01 G 0.01 - T.E.
L07U S 328.85 S 23.80 - T.E.
L08U S 489.02 S 30.79 - T.E.
L09U S 161.89 S 9.78 - T.E.
L10U S 161.50 S 10.03 - T.E.

Figure 12: Results for the unsolvable problems (4)

TempLM-TLG TempLM-REF OPTIC
Mk Time Mk Time Mk Time

Sat
TIL
S01T 176.69 0.4 176.69 1.5 176.69 2.47
S02T 210.47 0.86 210.47 3.12 191.28 6.2
S03T 106.77 0.64 106.77 2.46 106.77 4.53
S04T 207.18 35.13 165.92 45.84 169.18 72.85
S05T 180.46 34.95 180.46 124.30 183.91 16.28
S06T - T.E. 145.72 307.89 183.91 16.28
S07T 134.38 1467 - T.E. 140.13 13.85
S08T - T.E. - T.E. 119.94 35.2
S09T 176.69 0.45 176.69 0.65 176.69 2
S10T 189.77 2.89 189.77 8.34 - T.E.

Figure 13: Results for the tight problems (5)

TempLM-TLG TempLM-REF OPTIC
Time Time Time

Sat
TIL
S01U R 0.01 R 0.01 U 0.28
S02U S 914 S 1425 - T.E.
S03U R 0.01 R 0.01 U 0.13
S04U G 0.01 G 0.01 - T.E.
S05U R 0.01 R 0.01 U 0.17
S06U R 0.01 R 0.01 - T.E.
S07U R 0.01 R 0.01 U 0.2
S08U G 0.01 G 0.01 - T.E.
S09U S 0.07 S 0.1 - T.E.
S10U R 0.01 R 0.01 U 0.11

Figure 14: Results for the unsolvable problems (5)

in Driverlog (Figure 18) and Rovers domain shows similar results for both approaches
(Figure 20). With respect to makespan, TempLM-REF always returns the best results.
The values in these figures show a similar trend as the results in Figures 5, 7, 9, 11 and
13. To sum up, we can draw the following conclusions:

1. Makespan: TempLM-TLG and TempLM-REF show almost identical values and they
both clearly outperform OPTIC

2. Computation time: the tendency is consistent with the data of Table 3; that is,
OPTIC shows a better behaviour in those domains in which it solves more instances
(Driverlog and Satellite) and likewise for TempLM in the rest of domains. The time
of TempLM-TLG is generally below TempLM-REF except in the Satellite domain
where the TLG refinement is very efficient in pruning useless nodes.

These results confirm the conclusions extracted from our first analysis. That is,
TempLM-REF is the approach that works better with problems with deadlines.

18

Domain Total Total Total Total Total
Generated Solved Loose Tight Unsolvable

Driverlog 60 30 22 6 2
ZenoTravel 60 22 11 10 1

Parking 60 31 22 9 0
Pegsol 60 60 37 15 8

Floortile 40 15 11 4 0
Rovers 51 46 31 15 0

Satellite 60 20 10 10 0
Depots 66 30 10 10 10

Logistics 64 46 22 14 10
Total 521 300 176 93 31

Table 2: Classification of problems and number of solved problems

Domain Loose Tight Unsolvable
TempLM-TLG TempLM-REF OPTIC TempLM-TLG TempLM-REF OPTIC TempLM-TLG TempLM-REF OPTIC

Driverlog 16 14 18 6 6 6 2 2 1
ZenoTravel 10 9 9 11 10 8 1 1 1

Parking 4 3 22 5 4 6 0 0 0
Pegsol 37 32 23 12 12 15 8 7 0

Floortile 11 11 0 4 4 0 0 0 0
Rovers 24 23 24 14 13 13 0 0 0

Satellite 7 6 9 9 7 8 0 0 0
Depots 7 2 5 10 4 5 7 10 0

Logistics 22 22 7 14 14 3 10 10 0
Total 138 122 117 85 74 64 28 31 2

Table 3: Number of solved problems for each domain

Third experiment. In the recent ICAPS-2015, another approach that also uses
temporal landmarks was presented by Karpas et al. (2015). Unlike TempLM, which
is mainly focused on solving overconstrained temporal problems, this new approach is
focused on solving concurrent temporal problems. Two types of temporal landmarks are
defined: temporal action landmarks and temporal fact landmarks. A temporal action
landmark consists of a set of events (start/end of actions) and the time point in which
one of these events must occur. On the other hand, temporal fact landmarks are a set
of propositions which must hold for some time. Moreover, a Simple Temporal Network
(STN) with a set of simple temporal constraints between the time points associated with
the landmarks is maintained. This information is then compiled into the domain and
problem files and can be later used by any temporal planner. The empirical results
presented in Karpas et al. (2015) show that temporal landmarks are very helpful for
planners to solve problems with complex temporal interactions. However, according to
our experience, this approach is not that efficient when solving overconstrained problems
or detecting unsolvable problems. We designed a third experiment in which we used
the approach of Karpas et al. (2015) to extract the temporal landmarks of the following
instances of the Driverlog, Zeno and Floortile domains: D03T, D04U, Z05T, Z07U, F03T,
F05U and F06U from Tables 5, 9, 6 and 10. After running OPTIC with the seven compiled
domain and problem files, we found that it could only solve instance F03T.

19

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30 35

M
a
k
e
s
p
a
n

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 15: Pegsol (makespan).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

T
im

e
 (

s
e
c
s
.)

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 16: Pegsol (time).

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 2 4 6 8 10 12 14 16

M
a
k
e
s
p
a
n

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 17: Driverlog (makespan).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16

T
im

e
 (

s
e
c
s
.)

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 18: Driverlog (time).

8. Conclusion

This paper presents TempLM, a temporal planning approach for solving planning
problems with deadlines that draws upon the concept of temporal landmark. A temporal
landmark is a proposition that is found to necessarily happen in a solution plan in
order to satisfy the deadlines of the problem goals. The set of temporal landmarks
extracted from a problem along with their relationships form a temporal landmarks
graph (TLG) that is conveniently used to take decisions during the construction of the
solution plan and for guiding the search process. A key feature of our approach is that
as long as new actions are inserted in a plan and decisions about how to achieve subgoals
are taken, new temporal landmarks appear as a consequence of these decisions. This
way, the particular action scheduling of a partial plan in the search space determines
the future propositions to be achieved and when these propositions must be achieved,
updating the TLG accordingly. Our TempLM-REF approach exploits this feature, named
TLG refinement, in all the nodes of the search tree resulting in a very competitive
approach that exhibits an excellent behaviour in the detection of unsolvable problems
and the resolution of overconstrained problems. A rapid detection of unsolvability in
overconstrained temporal problems is a relevant issue in many real-world problems that
has been traditionally neglected in the temporal planning community. Even there exist

20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

M
a
k
e
s
p
a
n

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 19: Rovers (makespan).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30

T
im

e
 (

s
e
c
s
.)

Problem instances

TempLM-TLG
TempLM-REF

OPTIC

Figure 20: Rovers (time).

approaches that also make use of temporal landmarks, they are more focused on solving
complex temporal problems rather than identifying unsolvability. For all this, we think
our proposal represents a first solid step in the detection of unsolvable temporal planning
problems with deadline constraints.

Acknowledgements

We thank Derek Long for solving our doubts about the modal operators in PDDL3 and
Erez Karpas for supplying the compiled domain and problem files with their temporal
landmarks. This work has been partially supported by Spanish Government Project
MINECO TIN2014-55637-C2-2-R.

References

Benton, J., Coles, A. J., Coles, A., 2012. Temporal planning with preferences and time-dependent
continuous costs. In: Proc. Int. Conference on Automated Planning and Scheduling.

Blum, A., Furst, M., 1997. Fast planning through planning graph analysis. Artificial Intelligence 90 (1-2),
281–300.

Chen, Y., Wah, B. W., Hsu, C.-W., 2006. Temporal planning using subgoal partitioning and resolution
in SGPlan. Journal of Artificial Intelligence Research 26, 323–369.

Edelkamp, S., Jabbar, S., Nazih, M., 2006. Large-scale optimal pddl3 planning with mips-xxl. In: 5th
International Planning Competition Booklet. pp. 28–30.

Fox, M., Long, D., 2003. PDDL 2.1 : An extension to pddl for expressing temporal planning domains.
Journal of Artificial Intelligence Research 20, 61–124.

Garrido, A., Fox, M., Long, D., 2002. A temporal planning system for durative actions of pddl2. 1. Proc.
of the European Conference on Artificial Intelligence, 586–590.

Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y., 2009. Deterministic planning in the 5th
International Planning Competition: PDDL3 and experimental evaluation of the planners. Artificial
Intelligence 173 (5-6), 619–668.

Helmert, M., Domshlak, C., 2009. Landmarks, critical paths and abstractions: What’s the difference
anyway? In: Proc. Int. Conference on Automated Planning and Scheduling.

Hoffmann, J., Edelkamp, S., 2005. The deterministic part of ipc-4: An overview. Journal of Artificial
Intelligence Research 24, 519–579.

Hoffmann, J., Porteous, J., Sebastia, L., 2004. Ordered landmarks in planning. Journal of Artificial
Intelligence Research 22, 215–287.

21

Karpas, E., Wang, D., Williams, B. C., Haslum, P., 2015. Temporal landmarks: What must happen,
and when. In: Proceedings of the Twenty-Fifth International Conference on Automated Planning and
Scheduling, ICAPS 2015. pp. 138–146.

Long, D., Fox, M., 2003. The 3rd international planning competition: Results and analysis. Journal of
Artificial Intelligence Research 20, 1–59.

Marzal, E., Sebastia, L., Onaindia, E., 2008. Detection of unsolvable temporal planning problems through
the use of landmarks. In: Proc. of the European Conference on Artificial Intelligence. pp. 919–920.

Marzal, E., Sebastia, L., Onaindia, E., 2011. Full Extraction of Landmarks in Propositional Planning
Tasks. In: Symposium of the Italian Association for Artificial Intelligence. Vol. 6934. pp. 383–388.

Marzal, E., Sebastia, L., Onaindia, E., 2014. On the use of temporal landmarks for planning with
deadlines. In: Proc. of the 24th International Conference on Automated Planning and Scheduling.
AAAI Press, pp. 172–180.

Marzal, E., Sebastia, L., Onaindia, E., 2015. Temporal landmarks for overconstrained planning prob-
lems with deadlines. In: Proc. of the 27th IEEE International Conference on Tools with Artificial
Intelligence. IEEE, p. in press.

Rossi, F., van Beek, P., Walsh, T. (Eds.), 2006. Handbook of Constraint Programming. Vol. 2 of Foun-
dations of Artificial Intelligence. Elsevier.

Sen, D., 2010. Advances in Fish Processing Techology. Allied Publishers PVT LTD.

22

