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Abstract

In this paper we address the problem of incorporating
self-interest agents which have individual preferences
in a cooperative multi-agent planning (MAP) frame-
work. Thus, agents are aimed at solving together the
hard problem goals and, in addition, to satisfy as many
as possible of their soft preferences.
We propose an extension of FMAP, an efficient general-
purpose forward MAP algorithm that solves cooperative
tasks over a diverse set of planning problems, to accom-
modate the individual preferences of agents. The new
heuristic function of FMAP estimates now the cost to
reach the common problem goals as well as the util-
ity of a node regarding the individual preferences of the
agents. We show some preliminary experimental results
of the preference-based FMAP when agents use a Borda
voting mechanism to select the best node according to
their preference profiles.

Introduction
Multi-Agent Planning (MAP) extends the classical planning
paradigm by introducing several independent entities that
plan and act together. Over the last years, MAP has primar-
ily focused on studying different types of architectures (dis-
tributed or centralized), coordination mechanisms of agents’
solutions (coordination before planning, coordination after
planning or interleaved planning and coordination) or issues
like privay preserving.

Most MAP approaches stem from extensions of the clas-
sical single-agent planning paradigm, assuming agents to
be fully cooperative. Agents are typically endowed with a
set of global goals that must be collectively attained by the
group in order to solve the task at hand (Nissim, Brafman,
and Domshlak 2010; Torreño, Onaindia, and Sapena 2012;
Borrajo 2013).

The inclusion of self-interested agents with individual
preferences in MAP is a matter of study rarely addressed by
the planning community. Preference-based planning (PBP)
is a branch of classical single-agent planning that addresses
the problem of determining when a plan is preferred over
another (Baier and McIlraith 2009). Users specify the desir-
able properties of a solution plan in the form of preferences
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and PBP algorithms search for a solution that satisfies the
largest number of preferences.

The combination of PBP and MAP emerges as an inter-
esting and novel field of research. Most of the existing MAP
approaches focus only on fully cooperative agents or ap-
ply game-theoretic concepts to combine local solutions into
a multi-agent solution plan that ensures certain theoretical
properties, such as Nash equilibrium (Brafman et al. 2009).

In (Torreño, Onaindia, and Sapena 2013; 2014b), we in-
troduced FMAP (Forward Multi-Agent Planning), a general-
purpose MAP framework that efficiently solves cooperative
multi-agent planning tasks from different planning domains.
FMAP shows to be very effective at solving hard problem
instances where the level of interaction between subgoals
is strong. FMAP features a refinement planning scheme
(Kambhampati 1997), by which agents cooperatively ex-
plore a joint search tree. The nodes of the search tree are
partial-order plans built through the contributions of one or
more planning agents. At each iteration of the procedure,
agents pose refinement plans by introducing actions over a
base plan chosen among the leaf nodes of the tree through a
novel MAP heuristic function. Each agent is provided with
an embedded forward-chaining partial-order planner to build
refinement plans.

The main limitation of FMAP is that it only attains coop-
erative tasks in which the goals are known to all the par-
ticipating agents. This work generalizes the definition of
MAP task introduced in (Torreño, Onaindia, and Sapena
2014b), explicitly allowing agents to have individual pref-
erences over the goal state.

In its original form, FMAP agents apply a straightforward
A* procedure, selecting the open node of the search tree that
minimizes an evaluation function f = g + h as the next
base plan to refine. Since FMAP is based on a cooperative
scheme, all the agents share the same f value for any given
plan.

In this paper, we propose an extension of FMAP to ac-
commodate individual preferences. Our aim is to allow
agents to explore the search tree considering not only the
global goals, but also their individual preferences. For this
purpose, we defined a utility function that allows each agent
to estimate the quality of the refinement plans with respect
to the global goals as well as its individual preferences.

In single-agent PBP, it is necessary to establish an order-
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ing relation that specifies which plans are preferred to others.
A possible way to define this relation is to associate a numer-
ical value to each preference, representing the penalty value
for the plans that leave such preference unsatisfied. This ap-
proach is followed by PDDL3 (Gerevini and Long 2005),
in which a preference is violated by a plan if it logically
evaluates to false in such plan. As the aforementioned PBP
approach, we associate a penalty to each of the preferences
and evaluate the quality of the solution plans according to a
metric function that takes into consideration the unfulfilled
preferences of the agents.

We define a new plan selection scheme that aggregates the
individual preferences of the agents when selecting the next
base plan to explore. To do so, we rely on concepts from the
social choice theory; particularly, we apply voting mecha-
nisms to select the best base plan according to the preference
profiles of the agents.

Most of the PBP algorithms follow an incremental ap-
proach in which the planner returns a sequence of plans with
increasing quality (Baier and McIlraith 2009). For the exper-
imental evaluation, we modified the stop criterion of FMAP,
so that agents keep building solution plans of increasing
quality after the first one is found.

This paper is organized as follows: next section formal-
izes a generalized MAP task and presents the main concepts
upon which our approach is based, as well as the changes in-
troduced into our specification language to support individ-
ual preferences; next, we introduce the modified FMAP al-
gorithm and thoroughly analyze the main changes included;
following, we provide some initial experimental results; and
finally, we conclude and summarize our upcoming lines of
work.

MAP task formalization
Agents in our MAP model work under a limited knowledge
of the planning task by assuming that the information not
represented in an agent’s model is unknown to the agent. The
states of the world are modeled through a finite set of state
variables, V , each of them associated to a finite domain,Dv ,
of mutually exclusive values that refer to the objects in the
world. Assigning a value d to a variable v ∈ V generates a
fluent. A positive fluent is a tuple 〈v, d〉, which indicates that
the variable v takes the value d. A negative fluent 〈v,¬d〉
indicates that v does not take the value d. A state is a set of
positive and negative fluents.

An action is a tuple α = 〈PRE(α), EFF (α)〉, where
PRE(α) is a finite set of fluents modeling the precondi-
tions of α, andEFF (α) is a set of variable assignments that
model the effects of α. Executing an action α in a world state
S leads to a new state S′ as a result of applying EFF (α)
over S.

Definition 1 A MAP task is tuple TMAP =
〈AG,V,I,G,A,P〉. AG = {1, . . . , n} is a finite non-
empty set of agents. V =

⋃
i∈AG Vi, where Vi is the set

of state variables known to an agent i. I =
⋃

i∈AG Ii is
a set of fluents that defines the initial state of TMAP . G is
the set of global goals of TMAP that are common to all the
participating agents. A =

⋃
i∈AG Ai is the set of planning

actions of the agents. Finally , P =
⋃

i∈AG Pi is the set of
preferences of the agents in TMAP .

Some characteristics of the elements of TMAP are:

• Since specialized agents are allowed, they may only know
a subset of the initial state I. However, the initial states of
the agents never contradict each other.

• Tyipically, the sets of actions of two specialized agents are
disjoint but they may also contain some common actions.

• A includes two fictitious actions αi and αf : αi repre-
sents the initial state of TMAP , i.e., PRE(αi) = ∅ and
EFF (αi) = I, while αf models the global goals of
TMAP , i.e., PRE(αf ) = G, and EFF (αf ) = ∅.
• The sets of individual preferences of the agents, Pi, are

disjoint sets.

The previous definition includes a private set of prefer-
ences Pi for each agent i. Preferences in our model are de-
fined as soft goals since they are not required to be accom-
plished in order to solve the MAP task. Formally, a prefer-
ence of an agent i, p ∈ Pi, is a tuple p = 〈f, penalty〉,
where f is a fluent that the agent i wants to achieve in G,
and penalty is a numerical penalty applied to the agent in
case that the preference is not satisfied in a solution plan.

As indicated in Definition 1, our model considers special-
ized agents such that each agent has a local and limited view
on the MAP task. The view of an agent includes both the
information it knows and the preferences it has on the MAP
task at hand.

Definition 2 The view of an agent i on a MAP task is de-
fined as T i

MAP = 〈Vi,Ai, Ii,G,Pi, T hi〉. Vi is the set of
state variables known to agent i; Ai ⊆ A is the set of its
planning actions; Ii is the subset of fluents of the initial state
I that are visible to agent i; and G is the set of global goals
of TMAP . All the agents in TMAP are aware of the global
goals of the task. Pi is the set of individual preferences of
agent i, and T hi is the acceptable threshold of penalty for
the agent to validate a solution plan.

The state variables of an agent i are determined by the
view it has on the initial state, Ii, the planning actions it can
perform, Ai, and set of goals of TMAP . This also affects the
domain Dv of a variable v. We define Di

v ⊆ Dv as the set
of values of the variable v that are known to agent i. Agents
in our model interact with each other by sharing information
on their state variables. Given a pair of agents i and j, the set
of variables they share is defined as Vij = Vji = Vi ∩ Vj .
Moreover, some of the values in the domain of a variable can
also be public to both agents. The set of values of a variable
v that are public to a pair of agents i and j is defined as
Dij

v = Dji
v = Di

v ∩ Dj
v .

As introduced in (Torreño, Onaindia, and Sapena 2014b),
our MAP model is based on a multi-agent refinement plan-
ning framework, in which agents apply a Partial-Order Plan-
ning (POP) search procedure in order to generate refinement
plans. The next definitions briefly introduce standard con-
cepts from the POP paradigm (Ghallab, Nau, and Traverso
2004) adapted to a MAP context with state variables.
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Definition 3 A partial-order plan or partial plan is a tuple
Π = 〈∆,OR, CL〉. ∆ = {α|α ∈ A} is the set of actions in
Π.OR is a finite set of ordering constraints (≺) on ∆. CL is

a finite set of causal links of the form α
〈v,d〉→ β or α

〈v,¬d〉→ β,

where α and β are actions in ∆. A causal link α
〈v,d〉→ β

enforces a precondition 〈v, d〉 ∈ PRE(β) through an effect

(v = d) ∈ EFF (α). Similarly, a causal link α
〈v,¬d〉→ β

enforces 〈v,¬d〉 ∈ PRE(β) through an effect (v 6= d) ∈
EFF (α) or (v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as Π0 = 〈∆0, OR0,
CL0〉, where OR0 and CL0 are empty sets, and ∆0 con-
tains only the fictitious initial action αi. A partial plan Π for
a task TMAP will always contain αi.

The introduction of new actions in a partial plan may trig-
ger the appearance of flaws, that is, preconditions that are
not yet solved through a causal link, and threats. A threat

over a causal link α
〈v,d〉→ β is caused by an action γ that is

not ordered w.r.t. α or β and might potentially modify the
value of v ((v 6= d) ∈ EFF (γ) or (v = d′) ∈ EFF (γ),
d′ 6= d), making the causal link unsafe.

A flaw-free plan is a threat-free partial plan in which the
preconditions of all the actions are supported through causal
links.

Planning agents in our model cooperate to solve MAP
tasks by progressively refining an initially empty plan Π un-
til a solution is found. We define a refinement plan as fol-
lows:

Definition 4 A refinement plan Πr = 〈∆r, ORr, CLr〉
over a partial plan Π = 〈∆, OR, CL〉, is a flaw-free par-
tial plan which extends Π, i.e., ∆ ⊂ ∆r, OR ⊂ ORr and
CL ⊂ CLr. Πr introduces a new action α ∈ ∆r in Π, result-
ing in ∆r = ∆ ∪ α. All the preconditions in PRE(α) are
linked to existing actions in Π through causal links; i.e., all
preconditions are supported and so it holds ∀p ∈ PRE(α),
∃ β p→ α ∈ CLr, where β ∈ ∆.

Refinement plans are individually evaluated by each agent
to assess not only their quality, but also how they accomplish
the agent’s preferences. More precisely, an agent i evaluates
a refinement plan Π through an evaluation function f i(Π) =
g(Π) + selfInteresti · hpub(Π) + (1 − selfInteresti) ·∑

∀p∈Pi(βp · hpri(Π, p)), where:

• g(Π) is the cost of Π, measured as the number of actions
of Π.

• hpub(Π) is an estimate of the number of actions required
to reach the global goals of the task, G.

• hpri(Π, p) estimates the number of actions to satisfy the
agent’s preference p in the refinement plan Π.

• βp ∈ [0, 1] is a parameter used to assess the rel-
evance of achieving a particular individual prefer-
ence p over the others. βp is defined in terms of
the penalty associated to each preference: βp =
penalty(p)/

∑
∀p′∈Pi penalty(p′).

• selfInteresti ∈ [0, 1] indicates the weight that the agent
i gives to the accomplishment of the global goals and its
private preferences. The higher the value, the more self-
interested the agent, meaning that achieving the individual
preferences is more relevant to the agent. In the case of a
more cooperative agent that puts the emphasis on achiev-
ing the global goals of the task, the value of this parameter
will be lower.
For every open node Π (refinement plan) of the search

tree, an agent i applies f i(Π), thus creating an individual
preference profile over the open nodes of the tree. As we will
explain in the next sections, agents aggregate the individual
preference profiles to select the next base plan to be refined.
Definition 5 A solution plan for TMAP is a refinement plan
Π = 〈∆, OR, CL〉 that addresses all the global goals G of
TMAP and meets the penalty threshold for a majority of the
agents. Hence, a refinement plan Π is a solution iff αf ∈
Π (and thus, all the goals in G are satisfied; that is, ∀g ∈
PRE(αf ), ∃ β g→ αf ∈ CL, β ∈ ∆) and |PT | > |AG|/2,
where PT = {i ∈ AG|PlanPenaltyi(Π) ≤ T hi}.

Refinement plans in our model include parallel actions
introduced by different agents. As described in (Torreño,
Onaindia, and Sapena 2014b), we ensure that the effects
and preconditions of such actions are mutually consistent
through the resolution of threats over the causal links of the
plan. Consistency between any two non-sequential actions
introduced by different agents is always guaranteed since re-
finement plans are flaw-free plans.

Every time an agent i refines a plan by introducing an ac-
tion α ∈ Ai, it communicates the resulting refinement plan
Π to the rest of the agents in TMAP . As in (Torreño, Onain-
dia, and Sapena 2014b), privacy is preserved by communi-
cating only the fluents of the new action α that are relevant to
the sender and receiver agents. The information of a refine-
ment plan Π that an agent j receives from agent i configures
its view of such plan, viewj(Π).

Extensions to the MAP language
In (Torreño, Onaindia, and Sapena 2014a), we firstly in-
troduced our MAP language based on PDDL3.1 (Kovacs
2011). We have extended the language with some additional
constructs in order to support the extensions introduced in
this section. The domain files of the specialized agents do
not suffer any modification but the problem file of each agent
includes now new constructs to define the behaviour and in-
dividual preferences of the agent. Throughout this section,
we will illustrate the changes using a simple example from
the well-known driverlog domain.

Currently, we only allow for the definition of individ-
ual preferences regarding the goal state. Therefore, now the
:goal construct includes the definition of the preferences:

(:goal (and
(= (in package1) s1)
(= (in package2) s2)
(preference p0 (= (at driver1) s1))
(preference p1 (= (pos truck1) s1))

))
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As shown in the previous example, each preference is as-
sociated to an identifier that is then used in the specification
of the problem metric and the penalties that are applied to
the agent when its preferences are not accomplished. The
:metric section is defined as in PDDL2.1 (Fox and Long
2003).

(:metric minimize
(+ (total-time)

(is-violated p0)
(* (is-violated p1) 2)

))

The above example shows that the metric minimizes the
sum of the plan duration and the penalties associated to each
preference. Since FMAP does not explicitly manage time,
the total-time parameter is interpreted as the makespan
or duration of the plan. In the example, penalty(p0) = 1
and penalty(p1) = 2.

Finally, we include the :behaviour construct to define
both the agent’s self-interest level and its metric threshold.
This section is defined as in the following example:

(:behaviour
(self-interest 0.5)
(metric-threshold 0)

)

The agent in this example gives the same level of rele-
vance to the global goals and its preferences when it evalu-
ates refinement plans. The value of the metric threshold in-
dicates that the agent will only accept a plan as a solution
when all its individual preferences are satisfied.

Preference-based FMAP
This section describes the preference-based FMAP algo-
rithm, which was originally designed for fully cooperative
agents (Torreño, Onaindia, and Sapena 2014b) and has been
revised to accomodate individual preferences. FMAP agents
build a joint search tree in which nodes are refinement plans
(partial-order plans) whose actions are contributed by one
or more planning agents. Each agent independently devises
refinement plans over a centralized base plan through an em-
bedded forward-chaining POP (FPOP) procedure.

Algorithm 1 shows the preference-based FMAP algo-
rithm as executed by an agent i. The main stages of the pro-
cedure can be summarized as follows:

• Individual refinement plan generation: each agent indi-
vidually applies its embedded FPOP procedure to gener-
ate a set of refinement plans over the current base plan,
Πb. In Algorithm 1, the RP i set stores the refinement
plans devised by agent i. A refinement plan introduces
a new fully-supported action in Πb.

• Communication of refinement plans: agents communi-
cate each other the refinement plans they generated. Agent
i in Algorithm 1 sends each other agent j viewj(Πi),
for each Πi ∈ RP i, thus occluding the information
that is private to j. In turn, agent i receives, from each
other agent j, viewi(Πj), for all Πj ∈ RP j . The
Refinementsi set stores the view an agent i has on all

Algorithm 1: Preference-based FMAP algorithm as ap-
plied by an agent i
SolutionP lans← ∅
openNodesi ← ∅
Πb ← Π0

repeat
RP i ← FPOP (Πb)

Refinementsi ← RP i

for j ∈ AG, j 6= i do
∀Πi ∈ RP i, send viewj(Πi) to j
∀Πj ∈ RP j , receive viewi(Πj) from j

Refinementsi ← Refinementsi ∪RP j

∀ Πr ∈ Refinementsi, compute f i(Πr)

openNodesi ← openNodesi ∪Refinementsi
Πb ← SocialChoice(openNodesi)

openNodesi ← openNodesi \Πb

if αf ∈ Πb then
if MajorityApproval(Πb) then

SolutionP lans← Πb

until Timeout ∨ openNodesi = ∅
return SolutionP lans

the refinement plans created by the participating agents in
a particular iteration of FMAP.

• Evaluation of the refinement plans: each agent i indi-
vidually applies the utility function f i, described in the
previous section, to evaluate the refinement plans, and
it stores them into the openNodesi set. This set keeps
the plans ordered according to the agent’s utility function
f i. Agents make use of a DTG-based heuristic function,
hDTG (Torreño, Onaindia, and Sapena 2014b), to calcu-
late the heuristic estimates of f i.

• Base plan selection: agents select, among all the open
nodes of the multi-agent plan-space search tree, the re-
finement plan that is preferred by the group of agents. To
do so, agents aggregate their individual preferences on the
open nodes by means of a social choice mechanism.

If a base plan Πb supports the task goals G, i.e., αf ∈ Πb,
agents vote to decide if such a plan is accepted as a solu-
tion (MajorityApproval(Πb) function in Algorithm 1). In
order for the plan Πb to be accepted, the sum of the agent’s
penalties caused by Πb, PlanPenaltyi(Πb), has to be equal
or lower than the agent’s threshold T hi for a majority of
agents. Otherwise, the agents keep searching for plans that
are compliant with the threshold of more than half of the
agents.

The original, cooperative FMAP algorithm ended its exe-
cution after finding a solution plan. For the preference-based
version, we modified the stop criterion, allowing agents to
proceed searching for better solution plans until a timeout is
reached. This feature will be used in the experimental results
to better assess the quality of the different solution plans ob-
tained.
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In the following, we provide more insight on how an agent
i performs the individual evaluation of a refinement plan,
and how social choice is applied to select a base plan that is
preferred by the group of agent.

Evaluating refinement plans
In the cooperative FMAP version, refinement plans were
evaluated by the agent that generated them. At the plan com-
munication stage, all the agents received the result of the
evaluation along with the refinement plan. In the preference-
based version of FMAP, it is not possible to follow such a
scheme, since the utility function introduced requires the re-
finement plans to be evaluated independently by each of the
agents.

As shown in the formalization, given a plan Π, an agent i
applies a utility function f i(Π) = g(Π) + selfInteresti ·
hpub(Π)+(1−selfInteresti) ·

∑
∀p∈Pi(βp ·hpri(Π, p)) to

evaluate how a plan Π adjusts to the global goals and agent
i’s interests. The g(Π) parameter stands for the number of
actions of the plan; it is thus common to all the participat-
ing agents. The selfInteresti and β values are straightfor-
wardly infered from the agent’s problem file.

The heuristic values, hpub(Π) and hpri(Π, p), ∀p ∈ Pi,
are jointly estimated by each agent individually. In (Torreño,
Onaindia, and Sapena 2014b), we introduced our novel
MAP heuristic function, which is based on the concept of
Domain Transition Graphs (DTGs) (Helmert 2004). The
idea behind this function is to take account of the number
of actions of a relaxed plan built in a backwards fashion be-
tween the frontier state of the refinement plan, FS(Π), and
the set of goals of TMAP , G. The frontier state of a plan Π,
FS(Π), is the set of fluents 〈v, d〉 achieved by applying the
actions in Π over the initial state of TMAP , I.

We have modified the DTG heuristic function to jointly
estimate both the number of actions required to reach the
global goals, G, and each of the agent’s preferences. The
procedure first builds the relaxed plan for G as described
in (Torreño, Onaindia, and Sapena 2014b), and stores in
hpub(Π) the number of actions of the relaxed plan. Next,
the preferences of the agents are arranged according to their
associated penalties, from the highest to the lowest penalty
value.

The heuristic function processes the preferences in order.
For each preference p ∈ Pi, the procedure reuses the ex-
isting relaxed plan and adds the necessary actions for p to
be reached. Once p is processed, the number of extra ac-
tions added to the relaxed plan to support this preference are
summed up and returned as hpri(Π, p). The procedure uses
all the information in the relaxed plan to analyze the next
preferences, both the actions required to reach the goals in G
and the ones introduced to support the previously processed
preferences.

Selecting a base plan
A key aspect of the preference-based FMAP algorithm is re-
lated to the base plan selection stage. At each iteration, the
agents select the refinement plan that best accommodates
to the global goals and their preferences as the next base

plan. Selecting such a plan implies aggregating the individ-
ual preference profiles of the agents into a global one.

Social choice theory attains the problem of a set of agents
selecting a single outcome among a set of candidates ac-
cording to their individual preferences (Shoham and Leyton-
Brown 2009). More precisely, a social choice function se-
lects a single outcome from a set of preference profiles,
while a social welfare function aggregates a set of preference
profiles into a single one. Therefore, the tools and mecha-
nisms provided by the social choice theory fit into the prob-
lem of a set of self-interested agents selecting a base plan.

Social choice mechanisms are democratic voting systems
by which the alternative preferred by the voters is chosen.
One key result in social choice theory is the Arrow impos-
sibility theorem, which states that, given three or more can-
didates, there is not a social welfare function that meets a
specific set of criteria, namely Pareto efficiency and inde-
pendence of irrelevant alternatives, without being dictatorial
(Arrow 1951).

In practice, the previous result shows that there is not an
ideal voting method, as it is not possible to simultaneously
meet all the desirable social choice theoretical properties.
Voting methods can be classified as follows:

• Simple or sequential election: in these methods, agents
select a single outcome among their preference profiles.
These mechanism perform one or more election rounds,
so that each agent selects a single candidate in each round
and the result of the voting is always a single winner.

• Ranking methods: these voting systems allow each agent
to provide a complete or partial preference profile. A rank-
ing method aggregates the agents’ individual preference
profiles into a joint preference profile. The first-classified
outcome in the global preference profile is selected as the
winner.

• Condorcet methods: a subset of the ranking methods
accomplish the Condorcet criterion, which can be enun-
ciated as follows: given two outcomes o1 and o2, if o1
is preferred to o2 by a majority of agents, a Condorcet-
compliant method will keep the preference o1 ≺ o2
(Shoham and Leyton-Brown 2009). This property also en-
sures that the Condorcet winner is also Pareto efficient.
On the other hand, finding a Condorcet winner is not al-
ways possible, and thus, it is necessary to define a tie-
breaking mechanism. Moreover, Arrow theorem shows
that Condorcet methods are not independent of irrelevant
alternatives (Arrow 1951).

• Rating methods: these mechanisms allow agents to pro-
vide a rating for each plan in their preference profiles,
which makes them more flexible than ranking methods.

Different social choice methods can be tested in FMAP
for the agents to jointly select the next base plan. Next sec-
tion shows the preliminary results obtained after testing the
preference-based FMAP along with a ranking strategy.

Experimental results
This section provides the preliminary experimental results
we collected. The tests assess the performance of the

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

83



Domain Pfile First solution plan Best solution plan
Actions Makespan Metric Time Iter Actions Makespan Metric Time Iter

Driverlog

1 13 9 10 3,66 177 20 7 7,5 56,54 3300
2 13 7 8 4,91 232 19 7 7 173,58 8784
3 10 7 8 1,20 42 13 7 7 6,38 291
4 12 5 6,3 1,82 51 13 5 5,7 81,89 2778
5 13 7 8,3 3,30 81 16 7 7,7 27,94 928

Elevators

1 11 7 8,3 3,26 63 13 7 7,3 19,12 436
2 6 6 7 7,41 119 10 3 3,3 71 1513
3 4 4 5,3 0,68 5 8 4 4,7 7,26 118
4 11 6 7 20,00 355 - - - - -
5 17 8 9,3 57,75 990 17 7 8 75,78 1289

Zenotravel

3 6 5 5,5 1,22 27 8 4 4 15,07 433
4 5 4 5 1,63 41 10 4 4 24,64 845
5 9 5 6 3,75 103 11 5 5,5 9,67 295
6 6 3 4 1,26 15 10 3 3,5 12,03 300
7 14 7 8 14,29 398 16 7 7 101,29 2929

Table 1: Experimental results

preference-based FMAP system by using three different
planning domains adapted from the International Planning
Competitions1 (IPC) benchmarks.

FMAP is entirely encoded in Java, and it makes use of
Magentix22 (Such et al. 2012), a middleware multi-agent
platform that provides the communication services required
by the agents. Magentix2 agents communicate by means
of the FIPA Agent Communication Language (O’Brien and
Nicol 1998). Messaging is carried out through the Apache
QPid broker3.

All the experimental tests were performed on a single ma-
chine with a quad-core Intel Core i7 processor and 8 GB
RAM. This machine runs both the complete FMAP system
and the QPid broker. We set up the planner by establishing
a 5-minute time limit for each planning task, so that agents
are allowed to find as many solutions as possible within the
time limit. For each task, we take account of the first and
best solution (measured by computing the agents’ average
metric for each solution plan) obtained by the agents within
the time limit.

We selected three different domains from the IPC bench-
marks and adapted five of the STRIPS tasks to a preference-
based MAP context. We modeled some of the goals in the
original problems as agent-specific preferences, and added
extra preferences so that each agent has two different prefer-
ences. All the preferences have 1 unit of associated penalty,
and the metric threshold is set to 1, meaning that an agent
will approve solution plans that meet at least one of its pref-
erences. The self-interest value is set to 0.5 for all the agents,
and thus, they assign the same weight to their preferences
and the global goals.

The specific design guidelines we applied to adapt each
domain are described as follows:

1http://ipc.icaps-conference.org/
2http://www.gti-ia.upv.es/sma/tools/magentix2
3http://qpid.apache.org/

• Driverlog (pfiles 1-5): the driver objects of the orig-
inal domain are defined as agents. The preferences are
defined through the predicates (at-driver driver)
and (pos truck).

• Elevators (pfiles 1-5): each slow-elevator and
fast-elevator is defined as an agent. The agents’ in-
dividual preferences were established using the predicates
(lift-at elevator) and (at passenger).

• Zenotravel (pfiles 3-7): The aircraft objects are de-
fined as agents in the zenotravel MAP version. Pref-
erences are modeled by means of the predicates (at
aircraft) and (in person).

Table 1 summarizes the early results we collected. For
each MAP task, we provide information about the first and
best solution plan found by FMAP according to the average
of the agents’ metric values. Actions and Makespan columns
refer to the number of actions and duration of the solution
plans. Metric stands for the average metric value of the solu-
tion plan. Finally, Time and Iter indicate the execution time
and number of iterations required by FMAP to find each so-
lution plan.

The social choice method selected for these tests is a
Borda voting (Shoham and Leyton-Brown 2009), one of the
most common ranking methods. For these experiments, we
modified the Borda method in order to use incomplete pref-
erence profiles. Using complete preference profiles entails
processing all the leaf nodes of the search tree at each iter-
ation of the FMAP procedure, which is too complex even
in middle-range tasks. For this reason, we limited the pref-
erence profile used by each agent in the voting to a fixed
number of 10 candidates.

As shown in Table 1, agents find the first solution that
meets the metric thresholds in a matter of seconds (less than
one minute in all the tasks). This first solution found by the
agents tends to adjust to the metric threshold defined for the
majority of agents; that is, a majority of the agents solve one
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of their preferences, while the rest of agents do not attain
any preference.

The best solution for each task offers a more polished
plan that in most cases increases the number of actions,
but, in turn, offers an equal or lower duration and attains
a higher amount of the agents’ preferences. Agents find the
best solution in less than a half of the time limit in most
cases. In some tasks, the average metric equals the plan du-
ration (makespan), which means that all the preferences of
the agents are fulfilled (and thus, the metric only takes ac-
count of the plan duration).

Conclusions and future work
In this work, we presented an extension of FMAP, a coop-
erative MAP system, to support individual preferences. We
extended our MAP definition language, based on PDDL3.1,
to include new constructs to define the agents’ preferences
and behaviour.

The refinement planning procedure of FMAP has been
adapted to a preference-based context. Each agent makes
use of a utility function to measure how a plan adjusts to
the global goals and its private preferences. The application
of this utility function gives rise to an individual preference
profile for each of the agents. We apply social theory-based
mechanisms in order to aggregate the agents’ preference
profiles and to select the most appropriate base plan accord-
ing to the interests of the group of agents at each iteration of
the procedure. More precisely, agents apply voting methods
to democratically elect the candidate plan that is preferred
by the group.

Finally, we provide some early experimental results that
focus on solving simple tasks from the IPC benchmarks
adapted to a MAP context with preferences. In these exper-
iments, agents apply a Borda voting, a well-known ranking
method, to select plans.

This article presents a very early stage of our preference-
based MAP work. We have already modified and tested the
FMAP framework and the definition language to accommo-
date individual preferences. However, at this point we have
just a single functional coordination method.

We intend to add other more complex social choice
schemes that ensure different theoretical properties, such
as Condorcet-compliant ranking methods and rating mech-
anisms. Moreover, we will develop an in-depth experimen-
tal comparison to study how the search procedure and the
quality of the solution plans are affected by the behavioral
parameters defined for each agent, such as the social choice
mechanism, the level of self-interest or the metric threshold.
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