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& In this paper we tackle the sailing strategies problem, a stochastic shortest-path Markov
decision process. The problem of solving large Markov decision processes accurately and quickly
is challenging. Because the computational effort incurred is considerable, current research focuses
on finding superior acceleration techniques. For instance, the convergence properties of current sol-
ution methods depend, to a great extent, on the order of backup operations. On one hand, algo-
rithms such as topological sorting are able to find good orderings, but their overhead is usually
high. On the other hand, shortest path methods, such as Dijkstra’s algorithm, which is based on
priority queues, have been applied successfully to the solution of deterministic shortest-path Markov
decision processes. Here, we propose improved value iteration algorithms based on Dijkstra’s algor-
ithm for solving shortest path Markov decision processes. The experimental results on a stochastic
shortest-path problem show the feasibility of our approach.

INTRODUCTION

In planning with uncertainty, the planner’s objective is to find a policy
that optimizes some expected utility. Most approaches for finding such
policies are based on decision-theoretic planning (Boutilier, Dean, and
Hanks 1999; Bellman 1954; Puterman 1994). Among these, Markov
decision processes (MDPs) constitute a mathematical framework for mod-
eling and deriving optimal policies. Value iteration is a dynamic program-
ming algorithm (Bellman 1957) for solving MDPs, but it is usually not
considered because of its slow convergence (Littman, Dean, and Kaelbling
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1995). This is because its speed of convergence depends strongly on the
order of the computations (or backups).

The slow convergence of value iteration for solving large MDPs is
usually approached in one of two ways (Dai and Goldsmith 2007a): heuris-
tic search (Hansen and Zilberstein 2001; Bhuma and Goldsmith 2003;
Bonet and Geffner 2003a, b, 2006), or prioritization (Moore and Atkeson
1993; Ferguson and Stentz 2004; Dai and Goldsmith 2007b; Wingate and
Seppi 2005). In the first case, heuristic search (combined with dynamic pro-
gramming) is used to reduce the number of relevant states as well as the
number of search expansions. Hansen and Zilberstein (2001) considered
only part of the state space by constructing a partial solution graph, search-
ing implicitly from the initial state toward the goal state, and expanding the
most promising branch of an MDP according to an heuristic function.
Bhuma and Goldsmith (2003) extended this approach by using a bidirec-
tional heuristic search algorithm. Bonet and Geffner (2003a,b) proposed
two other heuristic algorithms that use a clever labelling technique to mark
irrelevant states. Later on, they explored depth-first search for the solution
of MDPs (Bonet and Geffner 2006). In the second case, prioritization meth-
ods are based on the observation that, in each iteration, the value function
usually changes only for a reduced set of states. So, they prioritize each
backup in order to reduce the number of evaluations (Moore and Atkeson
1993; Dai and Goldsmith 2007b). Ferguson and Stentz (2004) proposed
another prioritization method called focused dynamic programming,
where priorities are calculated in a different way than in prioritized sweep-
ing. Dai and Goldsmith (2007a) extended Bhuma and Goldsmith’s idea
(2003) by using concurrently different starting points. In addition, they
also proposed (Dai and Goldsmith 2007b) a topological-value iteration
algorithm, which groups together states that are mutually and causally
related in a meta state for the case of strongly connected states (or MDPs
with cyclic graphs). Likewise, other approaches such as topological sorting
(Wingate and Seppi 2005) and shortest path methods (McMahan and Gor-
don 2005a,b) have been proposed. On the one hand, topological sorting
algorithms can be used to find good backup orderings, but their computa-
tional cost is usually high (Wingate and Seppi 2005). On the other hand,
shortest path methods have been applied to the solution of MDPs with
some success (McMahan and Gordon 2005a,b).

We consider the problem of finding an optimal policy in a class of
positive MDPs with absorbing terminal states, which are equivalent to
stochastic-shortest-path problems (Bertsekas 1995). McMahan and Gordon
(2005a) proposed a method called improved prioritized sweeping (IPS) for
solving single-goal, stochastic shortest-path problems based on Dijkstra’s
algorithm. The advantages of this method are the reduction to Dijkstra’s
algorithm for the case of Markov chains (or acyclic deterministic MDPs),
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and the improvement in speed when compared with other methods such as
prioritized sweeping (Moore and Atkeson 1993) and focused dynamic pro-
gramming (Dai and Goldsmith 2007b). Unfortunately, IPS has no guaranteed
convergence to the optimal policy for the case of stochastic shortest-path
MDPs (Dai and Goldsmith 2007a,b; Li, 2009). Thus, in this work, we propose
a new, prioritized-value-iteration algorithm based on Dijkstra’s algorithm; this
new algorithm has guaranteed convergence for the case of stochastic shortest-
path problems and can deal with multiple goal and start states.

This article is organized as follows: first, we present a brief introduction
to MDPs, as well as solution methods; then, we describe the prioritized
sweeping approaches; we next describe our algorithms and present experi-
mental results on sailing strategies (Vanderbei 1996), a stochastic
shortest-path problem. Finally, we present the conclusions.

ABOUT MARKOV DECISION PROCESSES

Markov decision processes (MDPs) provide a mathematical framework
for modeling sequential decision problems in uncertain dynamic environ-
ments (Bellman 1957; Puterman 2005).

Formally, an MDP is a four-tuple (S, A, P, R), where S is a finite set
of states fs1,. . ., sng, A is a finite set of actions fa1,. . ., ang, and
P : S�A� S! [0, 1] is the transition probability function, which associates
a set of probable next states to a given action in the current state. The tran-
sition probability to reach state s0, if one applies action a in state s, is
denoted by P(a, s, s0). The reward obtained if one applies action a in state
s is denoted by R(s, a). A policy (or strategy) is denoted by p : S!A: it yields
an action for each state; it is a rule that specifies which action should be
taken in each state. The Markovian property guarantees that s0 depends only
on the pair (s, a). The core problem of MDPs is to find the optimal policy
to maximize the expected total reward (Puterman 2005). The value func-
tion in stage t, which is the expected reward (or utility) when starting at
state s and following policy p, is given by:

V pðsÞ ¼ E
X
t

ctR st ;p stð Þð Þ s0 ¼ sj
" #

; ð1Þ

where c2 [0, 1] is a discount factor, which may be used for decreasing expo-
nentially future rewards. For the case of discounted MDPs (0< c< 1), the
utility of an infinite state sequence is always finite. So, the discount factor
expresses that future rewards have less value than current rewards (Russell
and Norvig 2004). For the case of additive MDPs (c¼ 1) and infinite
horizon, the expected total reward may be infinite and the agent must
be guaranteed to end up in a terminal state.
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Let V � sð Þ be the optimal value function given by:

V � sð Þ ¼ max
p

V pðsÞ: ð2Þ

The optimal value function satisfies the Bellman equation (Bellman
1954; Puterman 2005) that is given by:

V �t sð Þ ¼ max
a

R s; að Þ þ c
X
s0

P s; a; s0ð ÞV �t�1 s0ð Þ
( )

: ð3Þ

Value iteration, policy iteration and linear programming are three of
the most well-known techniques for finding the optimal value function
V � sð Þ and the optimal policy p� for infinite horizon problems (Chang
and Soo 2007). However, policy iteration and linear programming are com-
putationally expensive techniques when dealing with problems with large
state spaces, because they both require solving several linear systems (of
equations) of the same size as the state space. In contrast, value iteration
avoids this problem by using a recursive approach typically used in dynamic
programming (Chang and Soo 2007).

Starting from an initial value function, value iteration applies successive
updates to the value function for each s2 S by using:

V̂V sð Þ ¼ max
a

R s; að Þ þ c
X
s0

P s; a; s0ð ÞV s0ð Þ
( )

: ð4Þ

Let fVnjn¼ 0, 1,. . .g be the sequence of value functions obtained by
value iteration. Then, it can be shown that every value function obtained
by value iteration satisfies Vn � V �j j � cn V0 � V �j j. Thus, from the Banach
fixed-point theorem, it can be inferred that value iteration converges to
the optimal value function V �ðsÞ. One advantage of value iteration comes
from the fact that the value functions obtained can be used as bounds
for the optimal value function (Tijms 2003).

The computational complexity of one update of value iteration is
O(jSj2jAj). However, the number of required iterations can be very large.
Fortunately, it has been shown in Littman, Dean, and Kaelbling (1995) that
an upper bound for the number of iterations nit required by value iteration
to reach an e-optimal solution is given by:

nit �
b þ log 1

e

� �
þ log 1

1�c

� �
þ 1

1� c
; ð5Þ
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where 0< c< 1, b is the number of bits used to encode rewards and state
transition probabilities, and e is the threshold of the Bellman error (Puterman
2005) given by:

Bt sð Þ ¼ max
a2A

R s; að Þ þ c
X
s02S

P s; a; s0ð ÞVt s
0ð Þ

( )
� Vt sð Þ: ð6Þ

The convergence of value iteration may be quite slow for c close to one.
For this reason, several improvements to value iteration have been pro-
posed (Puterman 2005). For instance, common techniques may improve
convergence rate, reduce the time taken per iteration, and=or use better
stopping criteria.

One of the easiest ways to improve convergence rate is to update the
value functions as soon as they become available (also known as asynchro-
nous updates). For instance, Gauss-Seidel value iteration uses the following
update equation (Puterman 2005):

V t sð Þ ¼ max
a

R s; að Þ þ c
X
s0<s

P s; a; s0ð ÞV t s0ð Þ þ c
X
s0�s

P s; a; s0ð ÞV t�1 s0ð Þ
( )

:

ð7Þ

It is well known that policy iteration converges in fewer number of itera-
tions than value iteration does, but it is more expensive per iteration because
it requires solving a system of linear equations at each one of the iterations.
In contrast, value iteration does not require the solution of any linear system
of equations. A combined approach (modified policy iteration) can exploit
the advantages of both. Thus, modified policy iteration uses a partial policy
evaluation step based on value iteration (Puterman 2005).

Another way of improving the convergence rate, as well as the iteration
time, is using prioritization and partitioning (Wingate and Seppi 2005).
Generally, prioritization methods are based on the observation that, at each
iteration, the value function usually changes only for a reduced set of states.
Thus, by restricting the computation to only those states, a reduction of the
iteration time is expected. It has been outlined that for acyclic problems,
the ordering of the states, where the transition matrix becomes triangular,
may result in a significant reduction in time (Wingate and Seppi 2005).

Another method to reduce the iteration time is to identify and elimin-
ate suboptimal actions (Puterman 2005). For instance, bounds of the opti-
mal value function can be used to eliminate suboptimal actions. The
advantage of this approach is that the action set is progressively reduced
with the consequent reduction in time.
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In another way, the number of iterations can be slightly reduced by
using improved stopping criteria based on tighter bounds of the Bellman
error (see Equation (6); Puterman 2005). For instance, a stopping criterion
would be to stop value iteration when the span of the Bellman error falls
below a certain threshold (Puterman 2005).

Finally, for the case of large MDPs with sparse transition matrices, mem-
ory savings can be obtained by using a sparse representation (Agrawal and
Roth 2002) where only nonzero transition probabilities are stored. In this
way, it is possible to handle larger problems than those that can be solved
otherwise (mainly in highly sparse MDPs). For instance, an adjacency
list containing all of the state transitions with nonzero probabilities can
be built.

PRIORITY-BASED METHODS FOR SOLVING MDPS

Although value iteration is a powerful algorithm for solving MDPs, it
has some potential problems. First, some backups are useless because not
all states change in a given iteration (Dai and Goldsmith 2007b). Second,
backups are not performed in an optimal order. Priority-based methods
such as prioritized sweeping (PS) (Moore and Atkeson 1993) avoid these
problems by ordering and performing backups so as to perform the least
number of backups (Dai and Goldsmith 2007b). To be more precise, PS
maintains a priority queue for ordering backups intelligently. This priority
queue is updated as the algorithm sweeps through the state space. PS can
begin by inserting the goal state in the priority queue when it is used in an
offline dynamic programming algorithm, such as value iteration. At each
step, PS pops a state s from the queue with the highest priority and per-
forms a Bellman backup of that state. If the Bellman residual of state s
is greater than some threshold value e, or if s is the goal state, then PS
inserts its predecessors into the queue according to their priority (Dai
and Goldsmith 2007b). Unfortunately, the use of a priority queue for all
the states of the model may result in an excessive overhead for real-world
problems (Wingate and Seppi 2005), especially for cyclic MDPs.

Focused dynamic programming (Ferguson and Stentz 2004) is another
variant of prioritized sweeping, which exploits the knowledge of the start
state to focus its computation on states that are reachable from that state.
To do this, focused dynamic programming uses a priority metric that it is
defined using two heuristic functions: an admissible estimate of the
expected cost for reaching the current state from the start state and an esti-
mate of the expected cost for reaching the goal state from the current state.
In contrast to other forms of prioritized sweeping, this approach removes
the state with the lowest priority value from the priority queue instead of
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removing the state with the highest priority value, because it is interested in
states through which the shortest path passes.

Dibangoye, Chaib-draa, and Mouaddib (2008) proposed an improved
topological value iteration algorithm (iTVI), which uses a static backup
order. Instead of minimizing the number of backups per iteration or elim-
inating useless updates, this algorithm attempts to minimize the number of
iterations by using a good backup order (a topological order). First,
depth-first search is used to collect all reachable states from the start state.
Next, breadth-first search is used to build a metric d(s), which is defined as
the distance from the start state to state s. A static backup order is built
from the resulting metric in such a way that states that are closer to the start
state be updated first. The algorithm is guaranteed to converge to the opti-
mal value function because it updates all states recursively in the same way
value iteration does.

Meuleau, Brafman, and Benazera (2006) solved stochastic over-
subscription planning problems (SOSPs) by means of a two-level hierarch-
ical model. They exploit this hierarchy by solving a number of smaller
factored MDPs. Shani, Brafman, and Shimony (2008) extended the use
of prioritization to partially observable Markov decision processes. In this
case, backups are prioritized by using the Bellman error as a priority metric,
and no priority queue is used.

In contrast with the above methods, it is worth mentioning a prioritiza-
tion method that does not require a priority queue (Dai and Hansen 2007),
instead, it uses a first input, first output (FIFO) queue if the backward tra-
versal of the policy graph is breadth first (forward value iteration), or a last
input, first output (LIFO) queue if the backward traversal is depth first
(backward value iteration). In both cases, unnecessary backups can be
avoided by using a labeling technique (Bonet and Geffner 2003a,b) and
the decomposition of the state space into a number of strongly connected
components. Unfortunately, it has been shown that the backup order
induced by these algorithms is not optimal (Dai and Hansen 2007).

Because the performance of PS depends on the priority metric that is
used to order states in the priority queue, several researchers have investi-
gated alternative priority metrics. For instance, IPS (McMahan and Gordon
2005a,b) uses a combination of priority metrics (a value-change metric,
and an upper-boundmetric). In fact, it has been shown that IPS may outper-
form other prioritized sweeping algorithms (Dai and Goldsmith 2007a,b).

PROPOSED ALGORITHMS

Dijkstra’s algorithm is an efficient greedy algorithm for solving
the single-source, shortest-path problem in a weighted acyclic graph. This
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algorithm is a special case of the A� algorithm, but unlike the A� algorithm,
Dijkstra’s algorithm is not goal oriented. This is because Dijkstra’s algor-
ithm computes all shortest paths from a single source node to all nodes
and thus solves the one-to-all shortest-path problem. In fact, it has been
shown that Dijkstra’s algorithm is a successive approximation method to
solve the dynamic programming equation for the shortest-path problem
(Sniedovich 2006, 2010), and therefore it is based on the Bellman’s optim-
ality principle. The main difference between Dijkstra’s algorithm and other
dynamic programming methods for the shortest-path problem is the parti-
cular order in which it processes states; it processes states according to a
greedy-best-first rule. More precisely, Dijkstra’s algorithm chooses the state
having the smallest value of the dynamic programming functional to be the
next state to be processed. One implication for the solution of MDPs is
that, instead of a topological order, a more suitable update order may be
to choose the state having the highest value function as the next state to
be updated. For that reason, in our algorithms we use the current value
function as a priority metric.

One of the advantages of value iteration and its variants (in particular PS)
is that their convergence to the optimal value function is guaranteed for the
case of discounted MDPs and for the case of additive MDPs with absorbing
states (Bertsekas 1995; Li 2009). This is because successive applications of
the Bellman equation guarantee convergence to the optimal value function.
For that reason, in our algorithms we update all predecessors of the best
state (having the highest value function) by using the Bellman equation.

Let V t(s) be the expected cost at time t to reach a goal state starting
from a state s2 S; pt(s) be the best policy or action at time t and state s;
R(s, a) be the reward for action a2A in states; L¼f(sk, s0k.ak,
pk)jpk¼P(s0kjsk, ak) 6¼ 0g be the set of all the possible state transitions; G
be the set of goal states; c be the discount factor; and e be the maximum
error. Basically, our method performs an initialization step followed by suc-
cessive prioritized removals of each state in the queue with an update of its
predecessors by using the Bellman equation until the queue is empty.

As shown in Algorithm 1, for each state s2 S, wemake p0(s)¼�1, then, if
s 62G, we assign a very large positive constantM to V 0(s); otherwise we set its
value to zero. Next, we push each goal state s2G into the priority queue
according to its priority V 0(s). Then, we repeat the following procedure until
the priority queue is empty. We pop the state s with the highest priority out
from the queue, and then we update all its predecessors y2 pred(s). For every
update of a predecessor of state s, we compute the Bellman equation

V tþ1 yð Þ ¼ max
a

R y; að Þ þ c
X

8 sk¼y;s0k ;ak¼a;pkð Þ2L
pkV

t s0k
� �

8><
>:

9>=
>;; ð8Þ
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and if jVtþ 1(y)�Vt(y)j> e, thenwepush state y into thequeue according to its
priority Vtþ 1(y), if state y is already in the queue, then its priority is only
updated.

As we have previously said, the convergence speed of value iteration
depends on a good state ordering, so we have devised several ways of updat-
ing the predecessors in our algorithms. In Algorithms 1, Gauss-Seidel
Improved Prioritized Value Iteration (IPVI), and 2, Jacobi Improved Prior-
itized Value Iteration (JIPVI), we update asynchronously all the predeces-
sors of each state, disregarding their ordering. In Algorithm 3, Prioritized
Predecessors Improved Prioritized Value Iteration (PPIPVI), we update
asynchronously all the predecessors of each state, but updates are priori-
tized according to the value function of each predecessor.

THE SAILING PROBLEM

For the validation of the proposed algorithm, we chose the sailing
strategies problem (Vanderbei 1996, 2008), which is a finite state-action-
space, stochastic shortest-path problem, in which a sailboat has to find
the shortest path between two points on a lake under fluctuating wind
conditions.

The details of the problem are as follows: the sailboat’s position is
represented as a pair of coordinates on a grid of finite size. The sailor
has eight actions that direct toward a neighboring grid position. Each
action has a cost (required time) depending on the direction of the boat’s
heading and the wind. For the action that sets a direction just opposite that
of the wind, the respective cost must be high. For example, if the wind is at
45 degrees as measured from the boat’s heading (upwind tack), it requires
four seconds to sail from one waypoint to one of the nearest neighboring
points. But, if the wind is at 90 degrees from the boat’s heading (crosswind
tack), the boat moves faster through the water and can reach the next way-
point in only three seconds. If the wind is a quartering tailwind (downwind
tack), it requires just two seconds. Finally, if the boat is sailing directly
downwind (away tack), it requires only one second.

The wind can hit the left or right side of the boat (a port or a starboard
tack, respectively). When changing from a port to a starboard tack (or vice
versa), three seconds (delay) are wasted. To keep our model simple, we
assume that the wind velocity is constant but its direction may change at
any time. The wind could blow from one of three directions: it could either
remain blowing from the same direction or come at 45 degrees from the
left or from the right. Table I shows the probabilities of a change in the
wind direction as used in all the experiments. When the heading is along

one of the diagonal directions, the time is multiplied by
ffiffiffi
2
p

to account
for the somewhat longer distance that must be traveled. Each state s of
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the MDP corresponds to a position of the boat (x, y), a tack t2f0, 1, 2g and
a wind direction w2f0, 1,. . ., 7g.

All of the experiments were performed on a 2.66GHz Pentium D com-
puter with 2 GB RAM runningWindows XP. All of the tested algorithms were
implemented using the Java language. The initial and maximum size of the
stack of the Java virtual machine was set to 1024MB and 1536MB, respect-
ively. For all of the experiments, we set e¼ 10�7 and c¼ 1. So, we are dealing
with an additive MDP, where convergence is not guaranteed by the Banach
fixed-point theorem (Blackwell 1965). Fortunately, the presence of absorb-
ing states (states with zero reward and 100% probability of staying in the
same state) may allow the algorithm to converge (Hinderer and Waldmann
2003). The lake size was varied from (50� 50) to (260� 260), and the result-
ing number of states varied from 55,296 to 1,597,536, respectively (without
the bounding beaches). We repeated each run 10 times, and then we calcu-
lated the mean and standard deviation of the solution time.

EXPERIMENTAL RESULTS

We tested our algorithms (IPVI, JIPVI, and PPIPVI) and several variants
of value iteration including different acceleration techniques (Puterman
2005): Gauss-Seidel Value Iteration (GSVI); Gauss-Seidel Value Iteration
with updates of only those states (as well as those of their neighbors) whose
value function changed in the previous iteration (GSVI2); and Gauss-Seidel
Value Iteration with the same acceleration procedures as GSVI2 plus static
reordering of the states in decreasing order of maximum reward (GSVI3).
Also two other algorithms were tested: the Vanderbei’s dynamic-
programming (VDP) approach (Vanderbei 1996, 2008) and the improved
topological value iteration (iTVI) (Dibangoye, Chaib-draa, and Mouaddib
2008). We also tested IPVI with different priority metrics, but it converged
to the optimal policy only for the priority metric suggested by Dijkstra’s
algorithm.

TABLE 1 Probability of Wind Direction Change

N NE E SE S SW W NW

N 0.4 0.3 0.3
NE 0.4 0.3 0.3
E 0.4 0.3 0.3
SE 0.4 0.3 0.3
S 0.4 0.2 0.4
SW 0.3 0.3 0.4
W 0.3 0.3 0.4
NW 0.4 0.3 0.3

First column indicates old wind direction and first row indicates new wind direction.
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Figure 1 shows the solution time for all tested algorithms as a function
of the number of states. As we can see, IPVI yielded the lowest solution
time, whereas VDP yielded the highest solution time. For instance, for
525,696 states, our algorithm took 29.9 seconds, whereas GSVI3 took
173.6 seconds, GSVI2 took 203.3 seconds, GSVI took 303.6 seconds and
VDP took 589.5 seconds. In this case, our algorithm was 5.8 times faster
than GSVI3, 6.8 times faster than GSVI2, 10.2 times faster than GSVI,
and 19.7 times faster than VDP. For 940,896 states, our algorithm took
57.4 seconds, whereas GSVI3 took 412 seconds, GSVI2 took 486.5 seconds,
GSVI took 755.1 seconds and VDP took 1376.6 seconds. In this case, our
algorithm was 7.2 times faster than GSVI3, 8.5 times faster than GSVI2,
13.2 times faster than GSVI, and 24 times faster than VDP. For 1,359,456
states, our algorithm took 81.5 seconds. As we can see, iTVI (Dibangoye,
Chaib-draa, and Mouaddib 2008) was not tested for more than 400,000
states because it exhausted the memory resources.

Figure 2 shows a closer look at the solution time as a function of the
number of states for IPVI, VI with asynchronous updates (GSVI) and iTVI.
For instance, for 393,216 states, our algorithm took 22.2 seconds, whereas
GSVI took 195.4 seconds and iTVI took 347.6 seconds. In this case, our
algorithm was 8.8 times faster than GSVI and 15.7 times faster than iTVI.

Figure 3 shows the solution time for different strategies of performing
predecessor updates. The best strategies were based on IPVI, whereas the
worst strategies were based on PPIPVI. In this case, it is clear that prioritiz-
ing predecessor updates did not result in a better solution time because of

FIGURE 1 Solution time as a function of the number of states for IPVI, three accelerated variants of VI,
VDP, and iTVI.
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the overhead involved. In fact, the number of updates for both algorithms
was almost the same.

Figure 4 shows the solution time as a function of the number of states
for IPVI and JIPVI. Both algorithms achieved a good solution time, but
JIPVI was slightly slower.

Figure 5 shows the number of updates as a function of the number of
states for IPVI. As we can see, the number of updates is nearly a linear func-
tion of the number of states. As a matter of fact, the number of updates per-
formed by IPVI was almost equal to the number of transitions of the MDP.

FIGURE 3 Comparison of different strategies for predecessor updating.

FIGURE 2 Closer look at the solution time as a function of the number of states for IPVI, GSVI, and
iTVI.
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CONCLUSIONS

In this article we have proposed and tested new prioritized value iter-
ation algorithms, based on Dijkstra’s algorithm, for solving the sailing stra-
tegies problem, a stochastic shortest-path MDP. Unlike other prioritized
approaches such as IPS, our approach can deal with multiple start and goal
states, and because it successively updates each state by using the Bellman
equation, it has guaranteed convergence to the optimal solution. In
addition, our algorithms use the current value function as a priority metric

FIGURE 5 Number of predecessor updates versus number of states for IPVI.

FIGURE 4 Solution time versus number of states for IPVI and JIPVI.
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because Dijkstra’s algorithm suggests that a more suitable update order is
given by the value of the dynamic programming functional.

We compared the performance of our algorithms with other state-of-
the-art algorithms including different acceleration techniques. At least in
the sailing problem, our approach was the fastest, and it has guaranteed
convergence to the optimal value function. We compared different ways
of performing predecessor updates. IPVI and JIPVI were the fastest algo-
rithms. At least in our experiments, prioritization of predecessor updates
(as in PPIPVI) did not result in a better solution time. In fact, prioritization
of predecessor updates yielded a very small reduction in the number of
updates. The number of updates performed by our algorithms was nearly
a linear function of the number of transitions of the MDP.
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Acapulco, México: Morgan Kaufmann.

Bonet, B., and H. Geffner. 2003b. Labeled RTDP: Improving the convergence of real-time dynamic pro-
gramming. In Proceedings of the international conference on automated planning and scheduling, 12–21.
Trento, Italy: AAAI Press.

Bonet, B., and H. Geffner. 2006. Learning depth-first search: A unified approach to heuristic search in
deterministic and non-deterministic settings and its application to MDP. In Proceedings of the 16th

international conference on automated planning and scheduling, 142–151. Cumbria, UK: AAAI Press.
Boutilier, C., T. Dean, and S. Hanks. 1999. Decision-theoretic planning: Structural assumptions and

computational leverage. Journal of Artificial Intelligence Research 11:1–94.
Chang, I., and H. Soo. 2007. Simulation-based algorithms for Markov decision processes. Communications and

Control Engineering. London, UK: Springer Verlag London Limited.
Dai, P., and J. Goldsmith. 2007a. Faster dynamic programming for Markov decision processes (Technical

Report, Doctoral Consortium, Department of Computer Science and Engineering, University of
Washington).

Dai, P., and J. Goldsmith. 2007b. Topological value iteration algorithm for markov decision processes. In
Proceedings of the 20th international joint conference on artificial intelligence, 1860–1865. Hyderabad,
India: Morgan Kaufmann Publishers.

Dai, P., and E. A. Hansen. 2007. Prioritizing Bellman backups without a priority queue. In Proceedings of
the 17th international conference on automated planning and scheduling, 113–119. Providence, RI, USA:
Association for the Advancement of Artificial Intelligence.

Dibangoye, J. S., B. Chaib-draa, and A.-I. Mouaddib, 2008. A novel prioritization technique for solving
Markov decision processes. In Proceedings of the 21st international FLAIRS (The Florida artificial intel-
ligence research society) conference, 537–542. Coconut Grove, FL, USA: AAAI Press.

584 M. G. Garcia-Hernandez et al.

D
ow

nl
oa

de
d 

by
 [

79
.1

08
.1

93
.6

8]
 a

t 1
3:

09
 1

8 
Ju

ne
 2

01
2 



Ferguson, D., and A. Stentz. 2004. Focused propagation of MDPs for path planning. In Proceedings of the 16th
IEEE international conference on tools with artificial intelligence, 310–317. Boca Raton, FL, USA: IEEE
Computer Society.

Hansen, E. A., and S. Zilberstein. 2001. LAO: A heuristic search algorithm that finds solutions with
loops. Artificial Intelligence 129:35–62.

Hinderer, K., and K. H. Waldmann. 2003. The critical discount factor for finite Markovian decision
processes with an absorbing set. Mathematical Methods of Operations Research, 57:1–19. Heidelberg,
Germany: Springer–Verlag.

Li, L., 2009. A unifying framework for computational reinforcement learning theory (PhD Thesis, The State Uni-
versity of New Jersey, New Brunswick, NJ, USA).

Littman, M. L., T. L. Dean, and L. P. Kaelbling. 1995. On the complexity of solving Markov decision
problems. In Proceedings of the 11th international conference on uncertainty in artificial intelligence,
394–402. Montreal, Quebec: Morgan Kaufmann Publishers.

Meuleau, N., R. Brafman, and E. Benazera. 2006. Stochastic over-subscription planning using hierar-
chies of MDPs. In Proceedings of the 16th international conference on automated planning and scheduling,
121–130. Cumbria, UK: AAAI Press.

McMahan, H. B., and G. Gordon. 2005a. Fast exact planning in Markov decision processes. In Proceedings
of the 15th international conference on automated planning and scheduling, 151–160. Monterey, CA, USA:
AAAI Press.

McMahan, H. B., and G. Gordon. 2005b. Generalizing Dijkstra’s algorithm and Gaussian elimination for solv-
ing MDPs (Technical Report, Carnegie Mellon University, Pittsburgh, PA, USA).

Moore, A., and C. Atkeson. 1993. Prioritized sweeping: Reinforcement learning with less data and less
real time. Machine Learning 13:103–130.

Puterman, M. L. 1994. Markov decision processes —Discrete stochastic dynamic programming. New York, USA:
John Wiley & Sons.

Puterman, M. L. 2005. Markov decision processes: Discrete stochastic dynamic programming. Wiley Series in
Probability and Statistics. New York, USA: John Wiley & Sons.

Russell, S., and P. Norvig. 2004. ‘‘Making Complex Decisions’’ (chap.17). In Artificial intelligence: A mod-
ern approach. 2nd ed. Berkeley, CA, USA: Pearson Prentice Hall.

Shani, G., R. Brafman, and S. Shimony. 2008. Prioritizing point-based POMDP solvers. IEEE Transactions
on Systems, Man. and Cybernetics 38 (6): 1592–1605.

Sniedovich, M. 2006. Dijkstra’s algorithm revisited: The dynamic programming connexion. Control and
Cybernetics 35:599–620.

Sniedovich, M. 2010. Dynamic programming: Foundations and principles. 2nd ed. In Pure and Applied Math-
ematics Series. Melbourne, Australia: Taylor & Francis.

Tijms, H. C. 2003. ‘‘Discrete-time Markov decision processes,’’ chap. 6. In A first course in stochastic models.
Chichester, UK: John Wiley & Sons.

Vanderbei, R. J. 1996. Optimal sailing strategies. Statistics and Operations Research Program, University of Prin-
ceton, USA. http://orfe.princeton.edu/~rvdb/sail/sail.html (accessed June 6, 2010).

Vanderbei, R. J. 2008. Linear programming: Foundations and extensions. 3rd ed. Princeton, NJ, USA:
Springer Verlag.

Wingate, D., and K. D. Seppi. 2005. Prioritization methods for accelerating MDP solvers. Journal of
Machine Learning Research 6:851–881.

Solving the Sailing Problem with a New Prioritized Value Iteration 585

D
ow

nl
oa

de
d 

by
 [

79
.1

08
.1

93
.6

8]
 a

t 1
3:

09
 1

8 
Ju

ne
 2

01
2 



Algorithm 1

Gauss-Seidel Improved Prioritized Value Iteration (IPVI)

IPVI(R, L, S, G, c, e)
(8 s2 S)V(s) M
(8 s2G)V(s) 0
ð8s 2 GÞqueue:enqueueðs;V ðsÞÞ
while ð:queue:isemptyðÞÞ
s queue.pop()
for all y2pred(s)
V0(y) V(y)

V ðyÞ ¼ maxa Rðy; aÞ þ c
P

8ðsk¼y;s0k ;ak¼a;pkÞ2L
pkV

0ðs0kÞ
( )

if jV(y)�V0(y)j> e then
queue.decreasepriority(y, V(y))

end
end

end
return

Algorithm 2

Jacobi Improved Prioritized Value Iteration (JIPVI)

JIPVI(R, L, S, G, c, e)
(8 s2 S)V(s) M
(8 s2G)V(s) 0
(8 s2G)queue.enqueue(s, V(s))
while :queue:isemptyðÞð Þ
s queue.pop()
for all y2 pred(s)
V0(y) V(y)

V ðyÞ ¼maxa ð1� cpyyaÞ�1 Rðy;aÞþ c
P

8ðsk¼y;s0k 6¼y;ak¼a;pkÞ2L
pkV

0ðs0kÞ
" #( )

if jV(y)�V0(y)j> e then
queue.decreasepriority(y, V(y))

end
end

end
return
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Algorithm 3

Prioritized Predecessors Improved Prioritized Value Iteration (PPIPVI)

PIPVI(R, L, S, G, c, e)
(8 s2 S)V(s) M
(8 s2G)V(s) 0
ð8s 2 GÞqueue:enqueueðs;V ðsÞÞ
while ð:queue:isemptyðÞÞ
s queue.pop()
sort predecessors of state s
for all y2pred(s)
V0(y) V(y)

V ðyÞ ¼ maxa Rðy; aÞ þ c
P

8ðsk¼y;s0k ;ak¼a;pkÞ2L
pkV

0ðs0kÞ
( )

if jV(y)�V0(y)j> e then
queue.decreasepriority(y, V(y))

end
end

end
return
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