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Abstract. Cooperation plays a fundamental role in distributed plan-
ning, in which a team of distributed intelligent agents with diverse pref-
erences, abilities and beliefs must cooperate during the planning process
to achieve a set of common goals. This paper presents a MultiAgent
Planning and Argumentation (MAPA) architecture based on a multia-
gent partial order planning paradigm using argumentation for communi-
cating agents. Agents use an argumentation-based defeasible reasoning
to support their own beliefs and refute the beliefs of the others according
to their knowledge. In MAPA, actions and arguments may be proposed
by different agents to enforce some goal, if their conditions are known to
apply and arguments are not defeated by other arguments applying. In
order to plan for these goals, agents start a stepwise dialogue consisting
of exchanges of plan proposals to satisfy this open goal, and they eval-
uate each plan proposal according to the arguments put forward for or
against it. After this, an agreement must be reached in order to select
the next plan to be refined.

Keywords: Cooperative distributed planning, Defeasible Reasoning,
Argumentation.

1 Introduction

A Cooperative Information System (CIS) is a large scale information system that
interconnects various systems of different and autonomous organizations,
geographically distributed and sharing common objectives [18]. With the emer-
gence of new technologies in computing, such as SaaS, cloud computing, Service
Oriented Computing, mash-ups, Web Services, Semantic Web, Knowledge Grid,
and other approaches, it is becoming increasingly natural to deal with Agent-based
computing orMultiAgentSystems.[28].Agents, as distributed autonomous soft-
ware entities, are required to engage in interactions, argue with one another, make
agreements, and make proactive run-time decisions, individually and collectively,
while responding to changing circumstances. For this reason, agents are being ad-
vocated as a next-generation model for engineering complex distributed systems.

Planning is the art of building control algorithms that synthesize a course of
action to achieve a desired set of goals of the information system. Unlike classical
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planning, in many real-world applications agents often have distributed contra-
dictory information about the environment and their deductions are not always
certain information, but plausible, since the conclusions can be withdrawn when
new pieces of knowledge are posted by other agents. For this purpose, argu-
mentation, which has recently become a very active research field in computer
science [4,23], can be viewed as a powerful tool for reasoning about inconsistent
information through a rational interaction of arguments for and against some
conclusion.

Defeasible Logic Programming (DeLP) [9] is a framework for reasoning
about defeasible information (also known as defeasible reasoning), where ten-
tative conclusions are obtained from uncertain or incomplete information, and
conclusions might no longer be valid after new information becomes available.
The work in [10] (see section 3) introduces a first approach known as DeLP-
POP framework, to integrate DeLP in Partial Order Planning (POP) [21], and
the work in [20] (see section 3) extends DeLP-POP framework to a multiagent
environment. As an example on how defeasible reasoning is introduced in these
frameworks, we can view an agent as a business person who needs to travel be-
tween London and Athens, and has to build a plan to get to Athens. One may
think the first action to do is to buy a flight ticket through an airline web site.
However, another agent who is aware of the latest news on the Internet, might
think the business man will not be able to fly due to a strike announcement in
London. Under these circumstances, the second agent will put forward an argu-
ment against the first one in order to ensure that the business man accomplishes
his goal to get Athens.

The motivation for introducing distributed planning in a multi-agent environ-
ment is twofold. On one hand, a multi-agent system design can be beneficial in
many domains, particularly when a system is composed of multiple entities that
are distributed functionally or spatially. On the other hand, distributed execu-
tion promotes the efficiency of parallel processing of actions, the robustness of
the system to cope with complex planning problems and the simplicity of an
incremental construction across a network of interconnected agents, thus avoid-
ing the critical failures and resource limitations of centralized systems. In this
paper, we present a MultiAgent Planning and Argumentation (MAPA) architec-
ture for cooperative distributed planning in a multiagent DeLP-POP framework,
which extends and refines the preliminary work presented in [20]. This paper is
organized as follows: section 2 gives a short related work; section 3 describes
a background; section 4 introduces the MAPA architecture; section 5 presents
the planning protocol of the architecture; and section 6 shows an example of
application to validate the MAPA architecture. Finally, we conclude and present
some directions for future work.

2 Related Work

This subsection is devoted to study the most relevant related works found in the
literature: multi-agent argumentation, cooperative distributed planning (with-
out defeasible reasoning) and centralized planning. Some systems that build on
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argumentation apply theoretical reasoning for the generation and evaluation of
arguments to build applications that deal with incomplete and contradictory
information in dynamic domains. Some proposals in this line focus on planning
tasks, or also called practical reasoning, i.e. reasoning about what actions are
the best to be executed by an agent in a given situation. Dung’s abstract sys-
tem for argumentation [7] has been used for reasoning about conflicting plans
and generating consistent sets of goals [2]. Further extensions of these works
present an explicit separation of the belief arguments and goal arguments and
include methods for comparing arguments based on the value of goals and the
cost of resources [23]. The combination of defeasible reasoning and planning has
been used in [22], in which the whole plan is viewed as an argument and then,
defeasible reasoning about complete plans is performed. Although the work in
[22] combines defeasible reasoning and partial order planning, defeasible reason-
ing is not used in the same way as [10]. In contrast, [10] uses arguments for
warranting subgoals, and hence, defeasible reasoning is used in each step of the
planning search process. In any case, none of these works apply to a multi-agent
environment.

A proposal for dialogue-based centralized planning is that of [26], but no
argumentation is made use of. The work in [3] presents a dialogue based on ar-
gumentation to reach agreements on plan proposals. Unlike our proposal, which
focuses on an argumentative and stepwise construction of a plan, this latter work
is aimed at handling the interdependencies between agents’ plans. The work in
[24] introduces a framework to build joint plans supported through the use of
argumentation schemes as a mechanism of dialogue during the planning search.
On the other hand, we can also find some systems that perform argumentation
in multi-agent systems by using defeasible reasoning but are not particularly
concerned with the task of planning [27].

3 Background

The key element of DeLP are defeasible rules (Head −� Body), which are used
to represent a deductive relation between pieces of knowledge that could be
defeated once other piece of knowledge is considered. Specifically, arguments
(combinations of defeasible rules and facts) for conflicting pieces of information
are built, and then compared to decide which one prevails. For instance, a de-
feasible rule like ”According to Internet news, an airport strike is expected”,
is denoted as ”strike −�news”. Note that, if it occurs in London, then it will
disrupt the passengers’ plans for flying between London and Athens.

The principle of least commitment in Partial Order Planning makes it one
of the more open planning frameworks. This is evidenced by the fact that most
existing architectures for integrating planning with execution, information gath-
ering, and scheduling are based on partial order planners. In [25], authors ar-
gue that POP-based frameworks offer a more promising approach for handling
domains with durative actions, and temporal and resource constraints as com-
pared to other planning approaches. In fact, most of the known implementations
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of planning systems capable of handling temporal and durative constraints (in-
cluding IxTET [12], as well as NASAÂs RAX [16]) are based on the POP
paradigm. Even for simple planning tasks, partial order planners offer a higher
degree of execution flexibility. In contrast, none of the known state-space plan-
ners can find parallel plans efficiently [14], and planners such as Graphplan [6]
only generate a very restricted types of parallel plans. For this reason, partial
order planning remains attractive when compared to state-space planning.

An extension of POP with DeLP-style argumentation, denoted DeLP-POP
framework, was introduced in [10], where both actions and arguments may be
used to enforce some goal, if their conditions (are known to) apply and arguments
are not defeated by other arguments applying. Unlike actions, arguments will
not only be introduced to intentionally support some step of a plan, but they will
also be presented to defeat or defend other supporting arguments in the plan.
When actions and arguments are combined in a partial order plan, new types
of interferences or threats appear [10]. These interferences need to be identified
and resolved to obtain valid plans.

Finally, the work in [20] proposes a preliminary extension of the theoretical
DeLP-POP framework to a multiagent environment. Specifically, it proposes a di-
alogue for argumentative plan search, by which agents exchange plan proposals
and arguments for or against such proposals. Unlike [20], the MAPA architecture
presented here solves the qualification problem, identifies new types of threats,
and extends the agents’ knowledge bases by including a set of agent-specific pref-
erences. This allows us to extend and adapt the planning protocol of MAPA to a
fully-automated argumentative dialogue between agents so as to reach agreements
during the plan construction. Moreover, the MAPA architecture promotes a more
practical vision of the extension of DeLP-POP to a multi-agent environment.

4 Elements of the MAPA Architecture

In state-based planning, a plan Π is a linear sequence of actions, and thus before
each action is added to the plan Π , we know which consistent state will hold.
In contrast, MAPA architecture is based on POP1, where a partial order plan Π
is a set of actions whose execution ordering ≺ is only partially specified (thus
encoding multiple linear plans).

The MAPA architecture works on a planning process distributed among several
planning agents, which have an incomplete knowledge (i.e. the set of actions and
arguments that an agent can propose can be different from other agents’), and
have to devise a joint, non-linear plan which may be later executed by them.
The following subsections expose (i) the agents’ planning model and the notion
of argument, (ii) the improvements introduced to deal with the qualification
problem and the notion of plan, and (iii) the new definition and handling of
threats introduced by the qualification problem.
1 We consider that POP is the best planning approach concerned with the dynamic

multiagent nature due to the ease to join several plan proposals into a single joint
plan.
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4.1 The Agents’ Planning Model and Arguments

The planning model of each agent is based on a set of literals Lit, such that � ∈ Lit
is a ground atom and ∼� ∈ Lit is a negated ground atom, where ∼represents the
strong negation and � =∼�. Each agent x of the MAPA architecture is initially
endowed with a planning task Mx = ((Ψx, Δx), Ax, Fx, G) where:

1. Ψx ⊆ Lit, represents a consistent set of true facts which describe the initial
state of the task.

2. Δx is a set of defeasible rules δ = �0, . . . , �k −� �
′
0, . . . , �

′
k.

3. Ax is a set of actions α = 〈P(α), X(α)〉 where P(α) ⊆ Lit is a set of precon-
ditions and X(α) ⊆ Lit is a set of effects.

4. Fx represents a consistent set of the agent-specific preferences Fx ⊆ {(a, d) |
(a ∈ A), d ∈ [0, 100]}, where the action a is preferred with the estimated
interest degree d.

5. G ⊆ Lit is the set of common goals which have to be satisfied.

The diversity of preferences is addressed by means of agreements between the
agents during the planning process. We assume that agents are fully cooperative,
so they have no incentives to retain relevant information. In POP, Ψ (consistent
set of agents’ initial states of the task) and G are encoded as dummy actions
{αΨ ≺ αG} with X(αΨ ) = Ψ , P(αG) = G, and P(αΨ ) = X(αG) = ∅.

An argument A for � ∈ Lit, is denoted as A = ({�}, {Δ′}), where Δ
′

is
a subset of defeasible rules Δ

′ ⊆ Δ. A is consistent if base(A) ∪ A is non-
contradictory.

Fig. 1. An argument A for l using the two defeasible rules: δ0 = l −�{p0, p1} and
δ1 = p1 −�{q0, q1, q2}

Figure 1 shows an example of an argument proposed A, where literals(A) =
{l, p0, p1, q0, q1, q2}. This argument for a literal � does not suffice to warrant �, it
depends on the interaction among arguments (see section 5.2), which will grant
consistency. Given two arguments A,B, we say A attacks B if the conclusion of
A contradicts some fact used in B, that is, if concl(A) ∈ literals(B). Therefore,
the MAPA architecture semantically differentiates between supporting arguments
(or argument steps) as the arguments specifically used to support some open
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condition of the plan, and attacking arguments which are only introduced to
attack some argument step previously introduced in the plan (i.e. it is not used
to support any open condition).

4.2 The Qualification Problem and Plan Definition

The qualification problem [13], which is an important problem currently not
supported in many planning architectures, is concerned with the impossibility of
listing all the preconditions required for a real-world action to have its intended
effect. For instance, let α (e.g. ”flying from London to Athens”) be an action with
n effects {e0, e1, . . .} ⊆ Lit (e.g. e0 =”be at Athens city”), which are defeated
by the defeasible conditions {d0, d1, . . .} ⊆ Lit (e.g. d0 = ”Volcanic ash cloud
between London to Athens”, d1 =”Airport strike in London”) respectively. Note
that, if these defeasible conditions occur, the expected effects of α would not
be achieved. The work in [10] solves this issue by introducing these defeasible
conditions as negated preconditions of α ({d0, d1, . . .} ⊆ P(α)), which must be
derived by arguments.

Fig. 2. An example solving the qualification problem

However, an action α in MAPA architecture follows a specific representation in
order to deal with this problem. We introduce a fictitious effect μ (meaning α
was just executed); then we define X(α) = {μ} and expand the set of rules Δ with
{ek−�μ}∪{ek−�μ, dk}, where ek represents the effect of the action α and dk is a
defeasible condition. For instance, in Figure 2, the precondition e0 of the action
αG is initially derived by an argument D = ({e0}, {e0−�μ}) whose base(D) = μ
will be satisfied by α. Then an attacking argument Q = ({e0}, {e0−�μ, d0, d1}),
which is a defeater of D (Q attacks D), arises from the distributed knowledge
among agents. Triangles in Figure 2 represent argument steps (i.e. arguments
that support preconditions of action steps), for instance the argument D, or
arguments attacking some other argument, for instance the argument Q, and
both are labeled with the argument name, while rectangles represent action



206 S. Pajares Ferrando, E. Onaindia, and A. Torreño

steps (i.e. actions that support the basis of an argument step) and are labeled
with the action name.

The MAPA architecture defines a plan Π as a tuple Π = (A(Π), Args(Π),
G(Π),OC(Π), CL(Π),SL(Π)), where A(Π) denotes the set of action steps,
Args(Π) represents the set of argument steps, G(Π) is the the task’s common
goals, OC(Π) is a set of ordering constraints, and CL(Π) and SL(Π) represent
the sets of causal and support links correspondingly. Let �1 be an open goal,
motivated by some action step β ∈ A, i.e. �1 ∈ P(β), and, let �2 be another open
goal, motivated by some argument step A ⊆ Δ, i.e. �2 ∈ base(A). Then, the goal
�1 ∈ P(β) must be supported by the argumentA, which will introduce a support
link (A, �1, β) ∈ SL(Π), where SL(Π) ⊆ Δ×G(Π)×A, while the goal �2 must
be satisfied by an action α, by introducing a causal link (α, �2,A) ∈ CL(Π)
where CL(Π) ⊆ A×G(Π)×Δ. Note that an argument B cannot support another
argument A with a support link in SL(Π), and an action α1 cannot support
another action α2 with a causal link in CL(Π). To get B to support step A, A
must be replaced by A ∪ B, and to get α1 to support action step α2, an argu-
ment ({ek}, {ek−�μ}) must be inserted between α1 and α2, where X(α2) = μ and
P(α1) = ek. Additionally, unlike in DeLP-POP, ordering constraints are placed
between argument steps (A,B) ∈ OC(Π), since every action (excepting αG) is
preceded by an argument which derives its actual effects.

4.3 Interferences among Actions and Arguments

If only actions are taken into account in a planning architecture, then there is
only one type of destructive interference that can arise in a plan under construc-
tion. This interference is captured by the notion of threat in POP, and occurs
when a new action inserted in the plan threatens (deletes) a goal solved by other
action steps. When actions and arguments are combined to construct plans, new
types of interferences appear that need to be identified and resolved to obtain a
valid plan. In multiagent DeLP-POP [20], we identified three types of interfer-
ences or threats, that cover all the interferences that may arise in a partial plan:
argument-argument, action-argument and action-action threats.

However, since the goals must be initially derived by some argument step
in the MAPA architecture, and then its basis must be satisfied by another ac-
tion step (including the initial step), argument-argument threats cover all the
interferences that may arise in a plan dealing with the qualification problem.
Nevertheless, MAPA architecture differentiates semantically between:

1. Planning threats (PlaThreats): Threats that arise between two argument
steps. For instance, let ”w” be an open condition of the plan in Figure 3(c’),
then the argument with an admiration is acting as a supporting argument
and a PlaThreat will be discovered. These threats override the typical action-
action and action-argument threats of [20]. As we will discuss in subsection
5.1, this kind of threats will be discovered and possibly resolved (by promote
or demote) in the POP Search Tree.
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2. Argumentation threats (ArgThreats): Threats that arise when an agent
discovers a new defeater which specifically attacks some argument step. Un-
like the PlaThreats, here the attacks to some argument step are made by some
attacking argument. For instance, in case that the argument with an admi-
ration in Figure 3(c’) is an attacking argument (i.e ”w” is not an open goal),
Figure 3(c’) represents an ArgThreat. Although this kind of threat is also
called argument-argument threat in [20], here we rename them to ArgThreats
with the aim of distinguishing between PlaThreats and ArgThreats. As shown
is subsection 5.2, these threats will be discovered and possibly resolved (by
Defeat-the-defeater in Figure 3(c”)) in the POP Evaluation Tree.

Fig. 3. (c) Selected plan. (c’) Threat. (c”) Solution to (c’): Defeat-the-defeater.

5 Cooperative Distributed Planning Protocol in the
MAPA Architecture

Figure 4 illustrates the planning protocol, which is mainly composed of three dif-
ferent cooperative distributed processes among the planning agents: Plan Gen-
eration, Plan Evaluation, and Plan Selection.

Different planning heuristics such as Z-LIFO [11], or the threat detect-&-solve
[10] can be used to select the next open goal to solve. In our case, we will consider
turn-based dialogues, a mechanism traditionally used in cooperative scenarios
where agents only participate during their turn. Additionally, agents can also be
modeled to put a veto on information or decisions of other agents. Agents are
enumerated, and each process is implemented through a different argumentative
dialogue.

5.1 Plan Generation

The input is both the selected plan Πr and the selected open goal (flaw) Φ, ac-
cording to the Plan Selection process (see subsection 5.3) and open goal selection
heuristic. The flaw Φ can be referred to both goals and PlaThreats. The main
goal of this process is to allow agents to propose a set of refinement plans
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Fig. 4. Planning Protocol in the MAPA architecture

Refinements(Πr), where each Πr(ξ) ∈ Refinements(Πr) is a refinement step in
the POP Search Tree that solves a selected flaw Φ such that Φ ∈ flaws(Πr) and
Φ /∈ flaws(Πr(ξ)). Following, we explain the two steps involved in this process:

1. PROPOSALS ROUND: Each agent, at its turn, proposes alternative ways
to achieve or derive Φ. The process ends when all agents have had a turn.
Refinements of a plan Πr are labeled as Π

(n,i)
r (ξ), where n ∈ Z indicates

the refinement proposal by the agent, i ∈ Z represents the agent, and r ∈ Z

represents the selected plan by the Plan Selection process. Note that, at each
turn, an agent can propose as many plans as possible from its knowledge.

2. LEARNING ROUND: Each agent updates its set of actions with the new
actions which appear in the refinements proposed by other agents.

The output of this process is a set of plans Refinements(Πr) where each Πr(ξ) ∈
Refinements(Πr) extends Πr. If |Refinements(Πr)| > 0, i.e. there is at least one
refinement plan, it is used as an input to the Plan Evaluation process (see section
5.2). If |Refinements(Πr)| = 0, i.e. there is not any proposal to solve the flaw Φ,
a backtracking step is performed, pruning the current base plan Πr.

5.2 Plan Evaluation

Roughly, the problem stems from different agents discussing about a given plan;
since these agents may have different initial facts and defeasible rules they
may not agree on the evaluation of the plan at some step. Along with the
POP Search Tree of the previous section, the MAPA architecture also consid-
ers the notion of POP Evaluation Tree.
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Definition 1. POP Evaluation Tree: Let Πr(ξ) be a refinement of plan Πr from
the previous process. A POP Evaluation Tree for Πr(ξ), denoted TΠr(ξ), where
there is at least one argument step (A, �, β) ∈ SL(Πr(ξ)), is defined as follows:

– The root of the tree is labeled with the plan 〈Πr(ξ)〉.
– Each node of the first level 〈Πr(ξ, ξ

′
) | ξ′

= Defeater(B, (A, �, β))〉, is a new
plan extending Πr(ξ) with some new defeater B that attacks A, discovering
a new ArgThreat in Πr(ξ).

– Each node of the second level 〈Πr(ξ, ξ
′
, ξ

′′
) | ξ

′′
= Defeater(C, Defeater(B,

(A, �, β)))〉, is a new plan extending Πr(ξ, ξ
′
) with some new defeater C that

attacks B (Defeat-the-Defeater), solving the ArgThreat in Πr(ξ).

The input of this process is a set Refinements(Πr) of plans proposed by the
agents in the previous process. Each plan Πr(ξ) ∈ Refinements(Πr) represents
the root of a new POP Evaluation Tree TΠr(ξ). Following, we explain the steps
involved in this cooperative process:

1. ATTACK ROUND: It initiates an evaluation dialogue for the root plan of
each TΠr(ξ), where each agent sends as many 〈Πr(ξ, ξ

′
) | ξ′

= Defeater(B,
(A, �, β))〉 as they know at their turn (Figure 5). If the agent does not know
how to attack a root plan, then it will skip its turn.

2. DEFENSE ROUND: It allows the agents to propose ways 〈Πr(ξ, ξ
′
, ξ

′′
) |

ξ
′′

= Defeater(C, Defeater(B, (A, �, β)))〉 to solve discovered ArgThreats in
each 〈Πr(ξ, ξ

′
) | ξ

′
= Defeater(B, (A, �, β))〉. This round only applies to

those POP Evaluation Trees which have discovered threats (Figure 5).
3. LEARNING ROUND: In this stage, each agent will update its sets of initial

facts and defeasible rules, by extracting literals � ∈ Lit and defeasible rules,
from arguments’ bases and plan proposals. Unlike the previous Plan Gen-
eration process, where agents learn abilities as actions, this step is focused
exclusively on the literals and defeasible rules.

4. EVALUATION: This stage marks each plan Πr(ξ) ∈ Refinements(Πr) as an
undefeated plan, in case that defeater plans 〈Πr(ξ, ξ

′
) | ξ′

= Defeater(B, (A, �,
β))〉 have not been discovered, or if they have been discovered but there is
a plan 〈Πr(ξ, ξ

′
, ξ

′′
) | ξ

′′
= Defeater(C, Defeater(B, (A, �, β)))〉. Otherwise,

Πr(ξ) is marked as a defeated plan.

The process ends when all the plans in Refinements(Πr) have been evaluated.
The output of this process is Evaluated(Refinements(Πr)), the set of evalu-
ated plans (Figure 5). As shown in the next process, undefeated plans, which
constitute the most promising refinements to reach a solution, are preferred to
defeated plans. However, defeated plans are kept, since each non-resolved attack
could be resolved in a subsequent evaluation process.

5.3 Plan Selection

Plan selection canbedone through theapplicationof standarddomain-independent
heuristics for evaluating plans. These heuristics approximate the cost of a solution
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plan in terms of the number of actions, the cost or the duration of the actions. Us-
ing this type of heuristics as the standard rating (RS) for plan assessment will
ignore the dynamic multi-agent nature of the MAPA architecture, where a set of
preferences is assumed by each agent. Therefore, a second rating based on the
agents’ preferences is necessary. We will refer to it as the preference rating (RF ).
Moreover, a third rating in terms of trust in cooperative planning is justified in
[15] as a judgement about the risk attached to each component in the plan requir-
ing cooperation, which we will call trust rating (RT ). RT depends on the trust in
(i) each argument step and (ii) each action step in the plan, where (i) is the trust-
worthiness (reputation) of the information sources which are used by the agent
in order to have a perception of the environment (coded as facts and defeasible
rules [10]), and, (ii) is the result of dividing the number of times the action is suc-
cessfully executed into the total number of executions of the action. The MAPA
architecture stores the execution of each action as a new case [1], recorded as suc-
cessful if the action is executed correctly, or failure if the action failed during the
execution. The success or failure of an action is determined by the achievement of
the action effects. For simplicity, we only consider trust in action steps.

Unlike the Plan Generation and the Plan Evaluation process, where agents
reason about agent facts, defeasible rules and actions, here agents reason about
standard ratings, preference ratings, and trust ratings, considering a compro-
mise between the desire to minimize the computational overhead and that of
maximizing the quality of the plan. This process receives as input the set of
evaluated plans Evaluated(Refinements(Πr)) from the Plan Evaluation process
and a set of previously not-selected partial plans OtherRefinements, in order to
select a new plan Πr ∈ {Evaluated(Refinements(Πr))

⋃
OtherRefinements} as

output. Following, we explain the steps involved in this process:
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1. PLAN FILTERING: The aim is to guide the plan search by selecting the best
subset FilteredPlans ⊆ {Evaluated(Refinements(Πr))

⋃
OtherRefinements} (as

candidate plans), according to the highest RS(Π) and RT (Π), such that
Π ∈ {Evaluated(Refinements(Πr))

⋃
OtherRefinements}2, where:

– RS(Π) = (cost(Π) + heuristic(Π)), where heuristic(Π) is a heuristic es-
timation of the cost of reaching a solution plan Π� from Π , and,

– RT (Π) is the product of the trust values of the action steps in Π .
2. PLAN RANKING: The agents (i ∈ {1, 2, . . . , k}) calculate their preference

ratio for each candidate plan Πn ∈ FilteredPlans. For this purpose, they
review whether each action a ∈ A(Πn) is preferred by them. If an action
a1 ∈ A(Πn) is preferred ((a1, d1) ∈ Fi | d1 > 50), then they increase by one
the value Ri

F (Πn); if they do not prefer an action a2 ∈ A(Πn), ((a2, d2) ∈ Fi |
d2 <= 50), then they subtract one unit from Ri

F (Πn), and otherwise they
keep Ri

F (Πn) unchanged. This stage, which simulates a internal reasoning
process for or against to select each plan Πn, allows each agent to establish
a preference relation between the plans in FilteredPlans.

3. PLAN NEGOTIATION: Since each agent has identified its preferred candi-
date plans, now the purpose of the negotiation is to reach an agreement
about the next base plan Πr ∈ FilteredPlans. This stage can range from a
simple voting process to a more sophisticated negotiation mechanism.

Finally,{NonSelectedPlans⊂Evaluated(Refinements(Πr)) |Πr /∈ NonSelectedPlans}
is added to the set OtherRefinements, and the process returns the agreed plan
Πr. If Πr is not a solution, the control will be passed to the Heuristic Flaw
Selection (see Figure 4). Otherwise, the planning process will end successfully.

6 Evaluating the MAPA Architecture within the Context
of a Transit Journey Planning Service

Transit users generally know their origin and destination cities. Based on the
schedules provided by the transit agencies, users choose the best routes that
match their travel needs. For this purpose, a Transit Journey Planning Service
(TJPS) (a specialized electronic search engine) is used to find the best route
between two locations by using some means of transportation. TJPSs are being
widely used by transit agencies accessed through a web user interface on a com-
puter terminal to support clients’ requests on public transport information. Most
of the existing TJPSs, provided by transit agencies and companies (Google Tran-
sit Planner, Transport Direct, Transport for London, Trip Planning Tool etc.)3,
are based on static schedule data. To the best of our knowledge, these centralized
planners (i) do not react to environmental changes such as bad weather, traffic
jams or bad railroads, and therefore they do not provide support to defeasible

2 Undefeated plans are preferred over defeated plans.
3 http://www.google.com/transit, http://www.transportdirect.info,
http://www.journeyplanner.org, http://www.networkedtraveler.org

http://www.google.com/transit
http://www.transportdirect.info
http://www.journeyplanner.org
http://www.networkedtraveler.org
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reasoning, and (ii) are not able to work in a cooperative distributed environment
so there is no choice for exchanging information between them.

However, defeasible reasoning is becoming an increasingly important feature
in many environments where context awareness in not fully specified. The work
in [5] presents a potential application for distributed defeasible reasoning in
ambient computing environments, where the ambient agents, who have different
viewpoints, have to face the available context. Similarly, defeasible reasoning is
also being applied to semantic web and e-commerce [17]. Here, we present a novel
application of cooperative distributed defeasible planning to a TJPS problem.

The MAPA architecture is implemented in Magentix 24, a platform for open
Multiagent Systems based on the Apache Qpid5 implementation of AMQP 6 for
communication between agents. This platform incorporates a security module
which provides key features regarding security, privacy, openness and interoper-
ability not offered by other current agent platforms.

Internet 
Ag1 Ag2 

Launcher 

Fig. 6. Deploying the MAPA architecture

6.1 Preliminaries

According to the multi-agent systems paradigm, we have implemented a CIS as
a collection of software agents (Figure 6) in the MAPA architecture. Each agent
simulates an information system, and interacts with the others so as to achieve
the common goals, thus forming a multi-agent society. More specifically, we
consider a scenario with six different cities and two geographically distributed
transit agencies, Ag1 (Greece transit agency) and Ag2 (UK transit agency),
aimed at providing a customer with a plan to travel from London to Athens
(Figure 7). The agencies are implemented as agents and have different knowledge
(knowledge is fully distributed), so two pieces of information derived from each
agent may appear to be contradictory. There are several ways to travel between
both cities: via car, ship, train or plane. Let’s assume that Ag1 uses BBC News
as a source of information, but Ag2 prefers CNN News to keep up to date, and

4 http://www.gti-ia.dsic.upv.es/sma/tools/magentix2/index.php
5 http://qpid.apache.org/
6 http://www.amqp.org

http://www.gti-ia.dsic.upv.es/sma/tools/magentix2/index.php
http://qpid.apache.org/
http://www.amqp.org


An Architecture for Cooperative Distributed Planning 213

both agree on finding a plan that minimizes the journey duration. The planning
tasks of the agents are defined in Figure 8, where we consider propositional
STRIPS [8] planning representation.

Athens B

C

Railway

Airline

Maritime Line

F Road

London

Road

Airline

D

Road

Initial State

Goal State

Road

Road

Fig. 7. Scenario of the application example

In what follows, we define the meaning of each literal and action. Literals:

– A, L - Athens, London; B, C, D, F - Other cities,
– cus, car, tra, pl, shi - a customer, a car, a train, a plane, a ship,
– r, rl, al, ml - a road, a railway, an airline company, a maritime line,
– bw, sn, wg, va, ds, aeo - bad weather, snow, wind gusts, volcano ash cloud,

dangerous situation, airplane engines work well (after test),
– br, ll, esf , fp - bad railroad, landslides, electrical supply failure, flying panic,
– h, tj, kudBBC, kudCNN - holidays, traffic jam, kept up to date by BBC

news, kept up to date by CNN news, and,
– μC , μP , μT , μS - moved car, moved plane, moved train and moved ship.

Actions are the following (notation: X(α) α←− P(α), i.e. the action effects are
indicated on the left side, while the action preconditions on the right side):

1. mP (pl, x, y): moving plane ’pl’ from location ’x’ to ’y’ takes 2 time units and
400 cost units.

2. mT (tra, x, y): moving train ’tra’ from location ’x’ to ’y’ takes 6 time units
and 200 cost units.

3. mS(shi, x, y): moving ship ’shi’ from location ’x’ to ’y’ takes 3 time units
and 100 cost units.

4. fMc(car, x, y): fast-moving car ’car’ from location ’x’ to ’y’ takes 8 time
units and 80 cost units.

6.2 Implementation

The planning process starts with an empty plan Π∅ = {αΨ ≺ αG} and flaws(Π∅) =
{(at cus A)}. First, the MAPA architecture enters the Plan Generation process,
where four plans are suggested: i) taking the car between D and A, Π

(1,Ag1)
∅ (ξ),
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ΨAg1 =
{

(wg B A); aeo; kudBBC; (at cus L); fp; (at pl C); (at car L); (link al C A); (link r D A); . . .
}

ΨAg2 =
{

kudCNN ; fp; (at cus L); (at tra B); (at shi C) (link rl B A); (link ml C B); (link r F A); . . .
}

ΔAg1 =

⎧⎨
⎩

{(at pl ?y), (at cus ?y)} −�(μP ?x ?y); {∼(at tra ?y),∼(at cus ?y)} −�{(μT ?x ?y), (br ?x ?y)};
{(at car ?y), (at cus ?y)} −�(μC ?x ?y); {∼(at shi ?y),∼(at cus ?y)} −�{(μS ?x ?y), (ss ?x ?y)};
(br ?x ?y) −�(esf ?x ?y); (esf ?x ?y) −�(sn ?x ?y); (sn B A) −�kudBBC; ∼(va C A) −�aeo; . . .

⎫⎬
⎭

ΔAg2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{∼(at pl ?y),∼(at cus ?y)} −�{(μP ?x ?y), (ds ?x ?y)}; {(at tra ?y), (at cus ?y)} −�(μT ?x ?y);
{∼(at car ?y),∼(at cus ?y)} −�{(μC ?x ?y), (tj ?x ?y)}; {(at shi ?y), (at cus ?y)} −�(μS ?x ?y);

(ds ?x ?y) −�(va ?x ?y); (va C A) −�kudCNN ; ∼(ll ?x ?y) −� ∼(bw ?x ?y);
∼(ll ?x ?y) −� ∼(bw ?x ?y); ∼(bw B A) −�kudCNN ; ∼(sn B A) −�kudCNN ;

(tj ?x ?y) −�{(h ?x)(link r ?x ?y)}; (h F ) −�kudCNN ; . . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

AAg1 =

{
1. (μC ?x ?y)

fMc←−−− {(link r ?x ?y), (at car ?x), (at cus ?x)}
2. (μP ?x ?y)

mP←−−− {(link al ?x ?y), (at pl ?x), (at cus ?x)}

}

AAg2 =

{
3. (μT ?x ?y)

mT←−−− {(link rl ?x ?y), (at tra ?x), (at cus ?x)}
4. (μS ?x ?y)

mS←−− {(link ml ?x ?y), (at shi ?x), (at cus ?x)}

}

FAg2 =
{

(mT, 90); (mP 0); (mS 60)
}

FAg1 =
{

(fmC 70); (mT, 80); (mP 5)
}

G = {(at cus A)}

Fig. 8. Initial facts, defeasible rules, actions, preferences and common goals

or ii) between F and A, Π
(2,Ag1)
∅ (ξ), iii) taking the train between B and A,

Π
(1,Ag2)
∅ (ξ), and iv) taking the plane between C and A, Π

(3,Ag1)
∅ . We only show

the plan iv) Π
(3,Ag1)
∅ (ξ) = {(mP, (μP C A),AAg1), (AAg1, (at cus A), αG)} where

AAg1 = ({(at cus A)}, {(at cus A)−�(μP C A)}) (see Figure 10(a)). The agents
learn the actions they did not know from these plans.

Second, the Plan Evaluation process starts, where: i) Π
(1,Ag1)
∅ (ξ) is not at-

tacked by any defeater and it is labeled as an undefeated plan. ii) Π
(2,Ag1)
∅ (ξ)

is attacked because city F is on holiday, so a traffic jam can be expected in the
road between F and A, and, therefore, the effects of the action fMc may not
be satisfied. Since there are not proposals to solve this ArgThreat, Π

(2,Ag1)
∅ (ξ)

is labeled as a defeated plan. iii) Π
(1,Ag2)
∅ (ξ) receives one attack because snow

is expected between B and A, so an electrical failure that damages the railroad
between B and A might occur. If this happens, the effects of the action mT
may not be satisfied. Here, Ag2 proposes a Defeat-the-defeater, which justifies
that snow conditions are not expected between B and A, and then Π

(1,Ag2)
∅ (ξ)

is labeled as undefeated plan. iv) Ag2 attacks Π
(3,Ag1)
∅ (ξ) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
) |

ξ
′

= Defeater(BAg2, (AAg1, (at cus A), αG))〉 where BAg2 = ({∼(at cus A)}, {∼
(at cus A)−�{(μP C A), (ds C A)}; (ds C A)−�(va C A); (va C A)−�kudCNN})
(see Figure 9) because the volcano ashes are expected between the city C and A
according to the CNN News, but Ag1 moves against (ds C A) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
,

ξ
′′
) | ξ

′′
= Defeater(CAg1, Defeater(BAg2, (AAg1, (at cus A), αG)))〉 where CAg1 =
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Fig. 9. Discussing about the plan Π
(3,Ag1)

∅ (ξ) in the Plan Evaluation process

({∼(va C A)}, {∼(va C A)−�aeo}) (see Figure 9). It is a Defeat-the-defeater res-
olution move since ∼ concl(CAg1) ∈ literals(BAg2)) (see Figure 10(a”)), and then
Π

(3,Ag1)
∅ (ξ) is labeled as an undefeated plan. The agents learn the literals and

defeasible rules, they do not know at the beginning of the turn.
Third, the Plan Selection process starts. The best subset of plans is defined

as FilteredPlans = {Π(1,Ag2)
∅ (ξ), Π

(3,Ag1)
∅ (ξ)}, since Π

(2,Ag1)
∅ (ξ) was labeled as

a defeated plan and heuristic(Π(1,Ag1
∅ (ξ)) returns a high value. Finally, agents
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Fig. 10. Screenshots: (a) The POP Search Tree. (a’) The POP Evaluation Tree for the

plan Π
(3,Ag1)

∅ (ξ). (a”) Viewing the content of the plan Π
(3,Ag1)

∅ (ξ, ξ
′
, ξ

′′
).
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choose Πr = Π
(1,Ag2)
∅ (ξ) as they prefer to take the train because of their fear of

flying. For space reasons, we omit the rest of the plan search.

7 Conclusions and Future Work

We have presented MAPA, a decentralized architecture for cooperative planning
in multiagent DeLP-POP, dealing with the qualification problem. It is imple-
mented as three independent cooperation processes between agents of a team
who propose, criticize, defend and select alternative plans by means of arguments
and actions. For future work, we intend to work in several directions: extend-
ing MAPA to other multi-agent scenarios like argumentation-based negotiation
or to temporal planning [19]; and evaluating MAPA in applications of dynamic
networked cooperative business processes and knowledge-sharing, including the
ability to work with and within complex supply chains. Finally, evaluating the
efficiency and effectiveness of the MAPA architecture.
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