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Abstract. In this paper we present a novel planning approach, based on well-
known techniques such as goal decomposition and heuristic planning, aimed at
working in highly dynamic environments with time constraints. Our contribution
is a domain-independent planner to incrementally generate plans under a deliber-
ative framework for reactive domains. The planner follows the anytime principles,
i.e a first solution plan can be quickly computed and the quality of the solution
is improved as time is available. Moreover, the fast computation of the sequential
actions allows the plan to start its execution before it is totally generated, thus
giving rise to a highly reactive planning system.

1 Introduction

A planner aimed to generate behavior for an agent in complex dynamic and unpre-
dictable environments, such as computer games or autonomous robots problems, often
has to react within a limited period of time. In these type of applications, the goal is not
to produce optimal plans, but to obtain a response that complies with the environment
demands.

There are several planning approaches to deal with dynamic domains. Contingent
planning [13], for example, generate plans where some branches are conditionally ex-
ecuted depending on the information obtained during the execution. Another approach
is conformant planning [4], which allows to deal with uncertainty on the initial con-
ditions and the action effects without monitoring the plan execution. However, these
approaches cannot take into account all possible contingencies and the computation
time is often prohibitive. In order to avoid the computational effort of considering all
possible unexpected situations during planning time, the on-line planning approaches
tackle these situations only when they appear. However, when precomputed behaviors
are not available the planner has to react quickly to unexpected events. One of the com-
mon techniques to overcome this problem is to follow the anytime paradigm. Anytime
algorithms give intelligent systems the capability to trade deliberation time for quality
of results [16].

There are two main issues anytime algorithms deal with: interruptibility and quality.
Interruptibility implies that the algorithm must be able to be interrupted at any time and
provide some answer. The issue of quality implies that the solution is monotonically
improved with respect to time. TheCASPERplanner [10], for example, starts with an



empty plan and, at each iteration, tries to solve conflicts and to achieve new goals. The
work discussed in [6] addresses the issue of integrating information about uncertainty
into the planning process and also deals with time constraints. Unfortunately, these
systems lack the ability to provide a first valid solution within an amount of time. The
same problem occurs in thePbRalgorithm [1], which assumes there is a polynomial
algorithm to compute a valid initial plan for a particular problem. Other approaches, like
the hierarchical planner proposed in [3], allows to limit the time for a first solution by
means of a domain-dependent rule-based system.A-UCMP [8] is another hierarchical
anytime planner that requires a library of reactive actions to execute plans containing
abstract actions. To sum up, in general either real-time planners use domain-dependent
information to have precompiled plans for quick reactions or they cannot provide an
initial solution within a time interval.

2 Objectives

The goal of this paper is to present a domain-independent planner able to provide valid
actions to an execution agent in environments with time constraints. Our proposal is a
deliberative approach, unlike most of the current reactive planners that require a pre-
computed behavior, usually implemented as a set of rules, to select an action according
to the current world state [14]. This domain-dependent behavior is very costly to be
computed or it is manually introduced into the planner.

Our approach is a novel combination of classical planning techniques such as goal
decomposition and heuristic planning. This approach shows to be highly competitive
when compared to other state-of-the-art planners, in terms of solution quality and time
computation. Moreover, our approach follows the principles of the anytime algorithms:

– Interruptibility: time given to infer a single action is limited. Actually, the planner
can compute a valid action (according to its current beliefs) in a few milliseconds.
Consequently, if necessary, the plan execution can start almost immediately after
the planning process has started. This way, we can get rapid reactions when an
unexpected event occurs.

– Following the anytime computation, our planner attempts to find a better solution
while time is available. This is currently done by artificially increasing the amount
of time used to find a solution: the limit is initially set to a few milliseconds and it
is successively increased to allow better solutions.

The contribution of this paper is to present and evaluate a novel fast deliberative
planner, competitive with other well-known classical planners, and adaptable to reactive
and dynamic domains: there is no need of pre-compiled plans, a first solution plan can
be quickly computed and the solution is incrementally improved according to available
time.

3 The planning system

Our planning system is designed to react rapidly to unexpected events. The speed up
of this process is achieved by focusing on the most immediate actions to execute rather



than searching for a complete plan. An additional reason for this behavior is that plans
often become invalid due to frequent changes in the dynamic environments.

The working scheme of the planner is quite simple. Given a state and a deadline, the
planner searches for an action, executable in that state, which can successfully lead to a
goal state. This process is repeated, starting from the resulting state after executing the
last computed action, until a goal state is reached. This scheme is very flexible and it
can be used in many different ways. The planning process, for example, can be carried
out concurrently (or in an interleaved way) with the execution. This scheme offers many
advantages like, for example, that the planner can take into account information which
is only available during execution. However, working concurrently with the execution,
implies the planner must make assumptions about the outcomes of action executions.
Following theassumption-based planningapproach [12], we have considered all ac-
tions as deterministic, replanning when an executed action has an unexpected outcome.

Our planner can also be used as an anytime planner, progressively improving a first
initial solution while time is available. To obtain this behavior we gradually increase the
maximum available time to compute the actions. Since there is no a systematic search
process to explore all possible alternatives, there is a limit in the quality of the plans
we can obtain. It would be feasible to incorporate this search process into the planner,
but this improvement will be addressed in future works. Both utilization schemes, the
on-line and the anytime, will be discussed in section 5.

4 The planning algorithm

The planning algorithm is based on a greedy action selection technique: the algorithm
computes an individual plan for each top-level goal separately, and these plans are then
ordered through a conflict-checking process in order to select the next action to execute.
A planning problemP = (O, I,G) is a triple whereO is the set of operators,I the
initial state andG the top-level goals. The algorithm starts from the current stateS0,
which initially corresponds toI, and works in four stages:

The relaxed planning graph (RPG). TheRPGis a graph based on aGraphPlan-like
expansion [2] where delete effects are ignored. These type of graphs are commonly
used in heuristic planners, likeFF [9] or LPG [7], since they allow to compute accu-
rate relaxed plans very fast. OurRPGincludes some additional features such as metric
optimization and support for sensing actions [15].

Calculation of the initial plans. In this stage, an incomplete plan is regressively com-
puted for each non-achieved goalgi/gi ∈ G ∧ gi 6∈ S0. Therefore,P is decomposed
in n planning subproblemsP1 = (O,S0, g1), P2 = (O, S0, g2), . . ., Pn = (O, S0, gn),
wheren is the number of non-achieved goals.

The process for building an initial planPi starts from an empty plan and the set of
subgoalsSG which initially only contains the top-level goalgi. In each iteration, the
most costly (according to theRPG) literal, l, is selected fromSG, as expanding firstly
the most costly literals usually generates more informed plans. Then, the best-evaluated
action,a, which producesl is added to the beginning ofPi. Actions are evaluated ac-
cording to their cost and the number of conflicts that they cause (literals deleted by the
action and required for the next actions in the plan). Finally, the new set of subgoals



SG will be formed with the preconditions ofa that do not hold inS0. This process
continues untilSG becomes empty.

An initial plan for a top-level goal is not necessarily executable since some of the
actions in the sequence might not be applicable in their corresponding state. This is
because the algorithm only takes into account one subgoal in each iteration. However,
the objective of initial plans is accomplished: an incomplete plan is rapidly computed,
the first action is directly executable, and it can be used as a good starting point for
further refinements.

The refinement stage.OncePi for each top-level goalgi is computed, the refinement
stage begins. Plans are improved while there is available time. If a planPi is not valid,
then there is (at least) one action - which we callafail - in Pi with unsupported pre-
conditions. In each iteration, an unsupported precondition,p, of afail is selected and
repaired in order to achieve a more complete plan.

In order to repair preconditionp of afail, a number of (incomplete) plans to achieve
p are computed, in the same way that the initial plans. These new plans start from the
states inPi - which we callSj - previous to actionafail and lead to statesS′j in which
p is true. These plans can be observed as bold arrows in Figure 1. In order to reuse the
final part of planPi, from each stateS′j we compute new (incomplete) plans to reach an
existing state inPi, taking care not to delete literalp. The new plans (see dashed arrows
in Figure 1) are also computed as initial plans.

Fig. 1. Different alternatives to repair a precondition ofafail.

The plans computed in this refinement stage provide different alternatives to repair
preconditionp. These alternatives can be observed in Figure 1 by following the arrows
(plans) between the states. From all possible alternatives, the one that produces fewer
conflicts (unsupported preconditions) is selected. When two alternatives produce the
same number of conflicts, the one with the lowest cost (with regard to the problem
metric) is selected.

Selection of the action to be executed.At this point, we have a planPi, which might
not be totally executable, for each top-level goalgi. When the executor requests the
planner one action, the refinement stage is halted. The planner will returnanext, the
first action of one or more plans (in case several plans share the same first action). In
order to find out which plan must be executed in first place, we apply some criteria to
rule out plans. These criteria are classified into:



– Context criteria: These criteria study the last executed actions in order to rule out
those plans that do not make progress toward the goals, that is, plans that undo a
previously achieved subgoal (inverse actions) or plans that cause an execution loop.

– Mutex criteria: These criteria study themutexrelations [2] between actions of
different plansPi. These relations are used to establish an order among plans in
such a way that those plans that do not result ordered in first place are ruled out.

– Least commitment criteria: If a planPi can start its execution without affecting
the later execution of other planPj , thenPj is ruled out. This way, we postpone the
decision to later stages.

If the result of this filtering process is still a set of plans with different initial actions,
then some additional criteria are applied. The first actionanext of the selected plan is
sent to the executor, and the planner updates its environment model with the expected
effects ofanext.

5 Results

First, we will show the obtained results from the perspective of the anytime behavior
of our planner. We have chosenLPG v1.2[7] to test and compare our results because
LPG is able to provide an initial solution very rapidly and then improve such a so-
lution progressively. Tables 1, 2 and 3 show the successive solutions that our planner
and LPG have generated for theBlocksworld, Satelliteand Numeric Depotsrespec-
tively (these results have been obtained using a 2Ghz. Pentium IVcomputer with
512 Mb. of memory).Numeric Depotsis the numeric version of theDepotsdomain,
where some objects must be transported with trucks and arranged in stacks. In this do-
main, plan quality is not measured in number of actions but in units of consumed fuel.
These problems can be found in theIPC-3 (Third International Planning Competition,
http://planning.cis.strath.ac.uk/competition/).

Results show that our planner is able to compute a first plan more rapidly than
LPG. We must also take into account that, in our case, it is not necessary to wait for
the complete plan to be computed to start its execution. Moreover, our planner scales
better thanLPG in the presented domains. This can be also seen in Figure 2, where
we show a comparison between the time needed by our planner andLPG to compute
a first solution in theZenoTraveldomain. This domain, presented in theIPC-3, is a
transportation domain, where objects are transported via aeroplanes. As for the plan
quality, the first solutions of our planner are usually better than the ones ofLPGand, in
general, our planner finds equal or better quality solutions in less time thanLPG.

Now, we will show the on-line behavior of our planner through the simulation of
unexpected events and changes in the goals during the plan execution. For this purpose,
we have defined a new robot manipulation domain in which a robot arm is used to pick
up objects from some tables and to arrange them in a two-dimensional space around a
central piece. The first proposed problem (see Figure 3) consists of ten objects (p1 , . . .,
p10 ) stacked on five tables (table1 , . . ., table5 ) which must be arranged around
a fixed central objectC placed in a separated platform. An object can be assembled
to the left, right, top or bottom of another object which has been already assembled.



Table 1.Solutions found in 20 seconds per plan for several problems in theBlocksworlddomain.

Problem Our solutions (plan length/time sec.)LPG solutions (plan length/time sec.)

10 64/0.03, 34/0.06 100/0.28, 36/0.5, 34/2.28
11 128/0.05, 32/0.12 200/0.7, 40/1.15, 38/1,9, 36/4,1, 34/5.4, 32/6,52
12 56/0.03, 42/0.12, 38/0.21 154/0.59, 48/1.03, 44/1.21, 42/2.92, 40/3.98
13 72/0.04, 48/0.12, 42/0.19 174/3.06, 52/3.44, 44/4.67, 42/10.44
14 86/0.06, 44/0.18 130/0.77, 64/2.4, 48/2.6, 46/3.4, 44/3.55, 42/5.4
15 100/0.08, 52/0.18, 48/0.31 172/6.23, 50/13.41, 46/13.57
16 188/0.2, 80/0.53, 58/0.72, 54/1.3 192/14.16, 112/16.14, 60/17.27, 58/17.83
17 236/0.25, 68/0.47, 54/0.66 352/15.63, 62/19.9
18 310/0.35, 70/0.6, 62/1.7 -
19 128/0.18, 94/0.6, 86/1.3, 68/2.6, 64/4.4 -
20 106/0.16, 78/0.5, 66/2.7 -

Table 2.Solutions found in 20 seconds per plan for several problems in theSatellitedomain.

Problem Our solutions (plan length/time)LPGsolutions (plan length/time sec.)

10 32/0.07, 31/0.47 32/0.09, 31/0.23, 29/4.48
11 35/0.09, 34/0.34 35/0.1, 34/0.16, 33/1.07, 31/1.7
12 43/0.15 51/0.21, 45/0.33, 43/0.5
13 58/0.29 67/0.36, 65/0.96, 59/2.11, 58/2.28, 57/2.46
14 45/0.17, 44/0.78 45/0.23, 43/0.62, 42/0.76, 41/7.23, 40/12.55
15 51/0.27, 50/1.22 74/0.34, 71/0.52, 64/0.62, 57/1.09, 51/1.31, 50/13.97
16 52/0.34, 49/1.2 54/0.33, 53/0.57, 51/1.31, 50/6.42
17 47/0.34, 46/1 55/0.43, 54/0.54, 53/0.86, 49/1.43, 47/5.32, 46/5.94
18 36/0.12 43/0.2, 41/0.32, 35/0.4, 33/9.88, 32/10.51
19 71/0.34, 65/1.3, 63/2.3 76/0.32, 73/0.54, 72/1.1, 69/1.45, 68/1.6, 64/8.6
20 89/0.5 108/0.4, 105/0.7, 102/1, 101/2, 99/3.4, 94/4, 88/16

Fig. 2. Time to compute a first solution for our planner andLPG in theZenoTraveldomain.



Table 3. Solutions found in 30 seconds per plan for several problems in theNumeric Depots
domain.

Problem Our solutions (fuel-cost/time sec.)LPG solutions (fuel-cost/time sec.)

10 66/0.1 48/0.12, 47/0.18
11 160/0.68, 140/4.4, 120/7.9 159/4, 154/7, 134/9, 133/11, 123/21, 103/28
12 227/2.68, 125/5.28 288/9.1
13 56/0.08 107/0.16, 77/0.21, 68/0.33, 57/0.87
14 89/0.33, 78/1.51 99/1.92, 80/2.19, 78/2.96, 68/3.63
15 256/2.92, 134/13.16 204/28.59
16 57/0.23 79/0.33, 78/0.66, 68/0.8, 59/0.96, 58/1.1, 57/6.4
17 46/0.3 49/0.53, 48/1.44, 38/1.6
18 409/3.1, 113/7.9, 99/12.6, 86/29.4 167/5.17, 137/8.75
19 98/0.5 218/0.9, 201/1.4, 181/1.7, 180/2, 150/2.4, 100/5.6
20 226/6.24, 213/28.99 245/26.65

This problem is currently a challenge for many domain-independent planners:LPG
v1.2, SGPlan[5] andMetric FF [9] take 2 minutes, 5 minutes and more than an hour
respectively to find a solution (without considering unexpected events or goal changes
because of their off-line nature).

Fig. 3. a) Initial state and b) goal state for the first proposed problem.

For this problem, we have simulated two unexpected events during the execution
(see Figure 4). The first unexpected event occurs when the robot has assembledp1 , p3
andp8 , and it is holdingp7 (Figure 4a). At that moment, the robot detects thatp7 has
fallen onto tabletable4 . The second unexpected event occurs when the robot tries to
assemblep5 to the right ofp3 . An error causes thatp5 is assembled to the right ofp2 .
The robot arm can disassemble objects, so it must repair this error.

Figure 5 shows the computation time for each action in the plan. We have limited
the available time to one second per action in order to obtain a smooth execution. This
limitation together with the problem complexity causes the execution of some unneces-
sary actions. Firstly, it can be observed that the first actions in the plan are, in general,
harder to compute since the distance to the goals is greater. On the contrary, when com-



Fig. 4. a) First unexpected event: objectp7 falls on table4. b) Second unexpected event:p5 is
assembled to the right ofp2 instead of to the right ofp3.

Fig. 5. Computation time for each plan action for the problem with unexpected events.

puting the last actions, the number of non-achieved goals may be very small since most
of them have already been accomplished. Consequently, the plans for each goal are
shorter and need fewer refinement steps to be repaired.

It can also be observed that an unexpected event does not cause an appreciable
increase in the computation time. This is due to the fact that the planner does not reuse
previous calculations in order to compute an action. This way, the cost of computing the
next action when everything goes as expected is very similar to the cost of computing a
first action for a new situation.

In Figure 6 we show a second problem in order to illustrate the planner behavior
when faced with changes in the goals. The top of this figure shows the current state of
the assembly platform when the change in the goals occurs, whereas the bottom shows
the new goal state to be achieved. Figure 7 shows the computation time to calculate
each plan action and the instants at which a goal change occurs. It can be observed that
a goal change has a similar effect to an unexpected event, that is, a negligible increase
in the computation time. Unlike other replanning tools, the behavior of our system does
not depend on how drastic the change is, but on the distance from the current state to the
goals (actually, many replanners rely on the idea that the actual situation is only slightly
different from the original one [11]).



Fig. 6. a) Initial state (top) and goal state (bottom) for the second proposed problem. b) Current
state (top) when the first change in the goals (bottom) occurs. c) Second change in the goals.

Fig. 7. Computation time for each plan action for the problem with goal changes.

6 Conclusions and future work

In this paper we have presented an anytime deliberative planner, designed to work in
highly dynamic environments with time constraints. This planner is based on well-
known techniques, such as goal decomposition and heuristic planning, but combined in
a novel approach. Used as an on-line planner, our approach presents important advan-
tages: our planner can obtain a first solution plan very rapidly and scales up very well in
many domains. Also, plan execution can start after the first action has been computed,
which can be done in a few milliseconds. This feature allows our planner fast reactions
when unexpected events occur.



Our planner can also be used as an anytime planner by artificially increasing the
available time to compute each action. Results show that plans obtained are quickly
computed and have good quality. However, our planner is not complete, and there is
a limit in the quality of the plans it can generate. Currently, we are interested in over-
coming this limitation by including an additional search process when there is available
time. This way, we can obtain a complete planner, able to produce better-quality plans.
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